

Green Remediation

Nachhaltigkeit

Beispiele

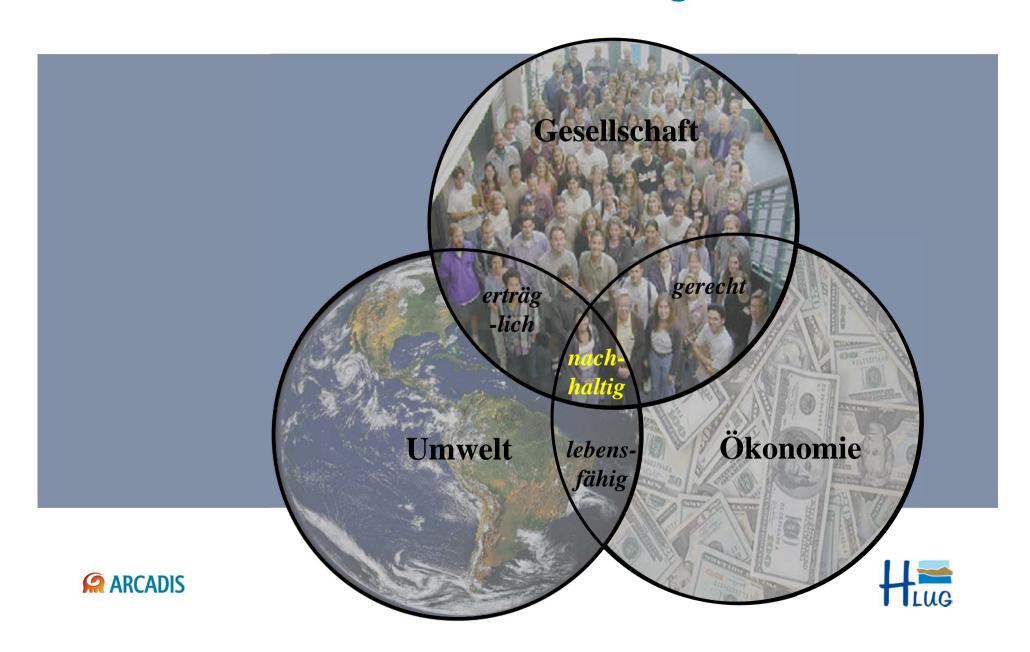
Nachhaltigkeit - Meilensteine

1560	Kurs	sächsisc	he Fors	tordnung

■ 1972 Club of Rome (Die Grenzen des Wachstums)

We are searching for a model output that represents a world system that is sustainable without sudden and uncontrollable collapse...

1983


Weltkommission für Umwelt und Entwicklung (UN) (Brundtland-Kommission) Entwicklung zukunftsfähig zu machen, heißt, dass die gegenwärtige Generation ihre Bedürfnisse befriedigt, ohne die Fähigkeit der zukünftigen Generation zu gefährden, ihre eigenen Bedürfnisse befriedigen zu können

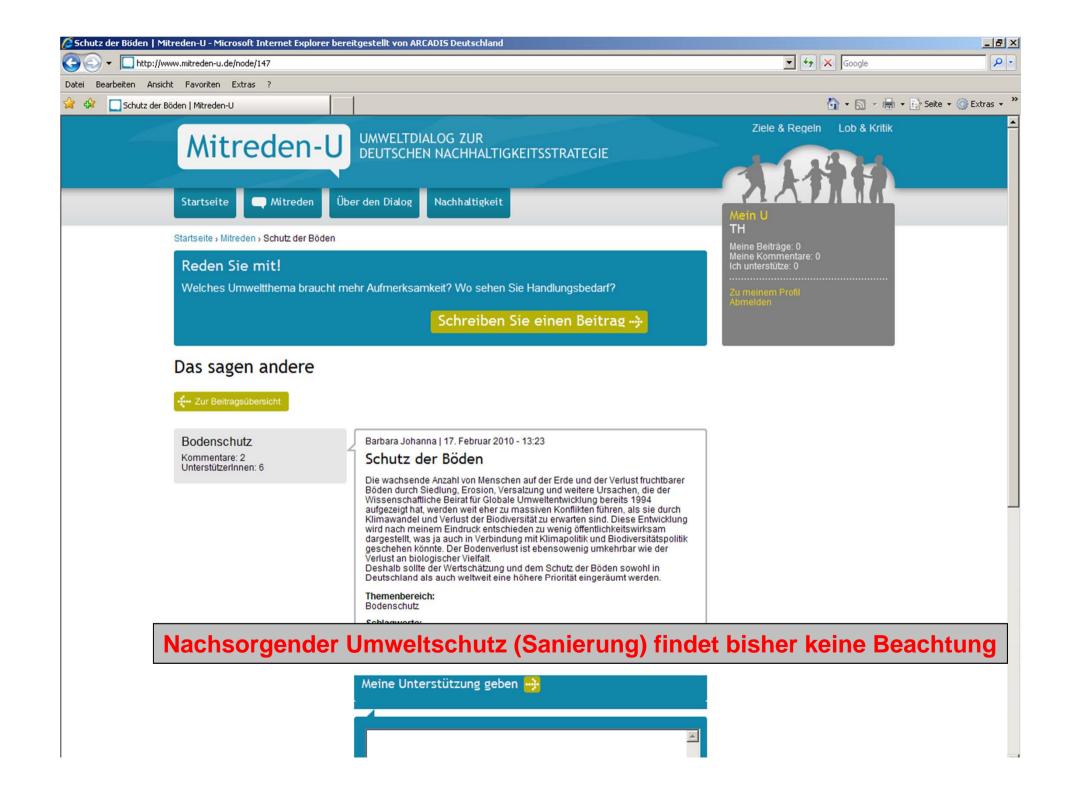
- → Generationengerechtigkeit
- → Globale Gerechtigkeit
- → Getrennte Politikfelder gemeinsam behandeln

Drei-Säulen-Modell der Nachhaltigkeit

Nachhaltigkeitsbericht Deutschland

NACHHALTIGE ENTWICKLUNG IN DEUTSCHLAND

Indikatorenbericht 2010



Statistisches Bundesamt

Nachhaltigkeit: Organisationen

- NICOLE (network for industrially contaminated land in Europe)
- SuRF UK, US (sustainable remediation forum, UK)
- CL:AIRE UK (contaminated land: applications in real environments)
- US Environmental Protection Agency
- SAGTA (soil and groundwater technology association, UK)
- Eurodemo+

Green Remediation

Nachhaltigkeit

Beispiele

Green Remediation ...

.... ist der Ansatz, alle Umweltauswirkungen einer Sanierung zu berücksichtigen und alle Maßnahmen zur Minimierung des *Environmental Footprints** zu ergreifen.

US EPA

* Umweltbilanz, Ökobilanz

Green Remediation: Ansätze in Deutschland

- LUBW (1999): Umweltbilanzierung von Altlastensanierungsverfahren (CD)
- Altlastenforum Baden-Württemberg (2004): Heft 9 Ökobilanzierung von Altlastensanierungsverfahren
- □ Dissertation Volker Schrenk (Universität Stuttgart 2005): Ökobilanzen zur Bewertung von Altlastensanierungsverfahren
- □ Altlastenforum Baden-Württemberg (2011), Arbeitskreis "Innovative Erkundungs-, Sanierungs- und Überwachungs- methoden" Diskussionsthema "Grüne Sanierung"

Green Remediation (Environmental Footprint)

- Minimierung des Energieverbrauchs
- Maximierung des Einsatzes erneuerbarer Energien
- Minimierung der Emission von Schadstoffen* und Treibhausgasen (CO_2) (\rightarrow carbon balance)
- Minimierung des Wasserverbrauchs
- Verminderung, Wiederverwendung und Recycling von Materialien und Abfällen
- Minimierung der Flächeninanspruchnahme
- Nutzung von Synergieeffekten

Green Remediation (Bespiel Bodenluftabsaugung)

- Verwendung gebrauchter Anlagen, die den vorgesehenen Zweck weitgehend erfüllen
- Einsatz von energieeffizienten Anlagenkomponenten
- Einsatz von Photovoltaik zur Stromversorgung (kontinuierlichen Betrieb sicherstellen)
- Reinigung der belasteten Abluft mit Hilfe eines Biofilters anstatt Sorption auf Aktivkohle
- Einsatz von direktanzeigenden Messgeräten zur Messung der Schadstoff-Konzentrationen und Beschränkung der chemischen Analysen auf ein absolutes Minimum (Bestimmungsgrenzen, summarische Größen, behördliche Akzeptanz)

Vergleich verschiedener Verfahren

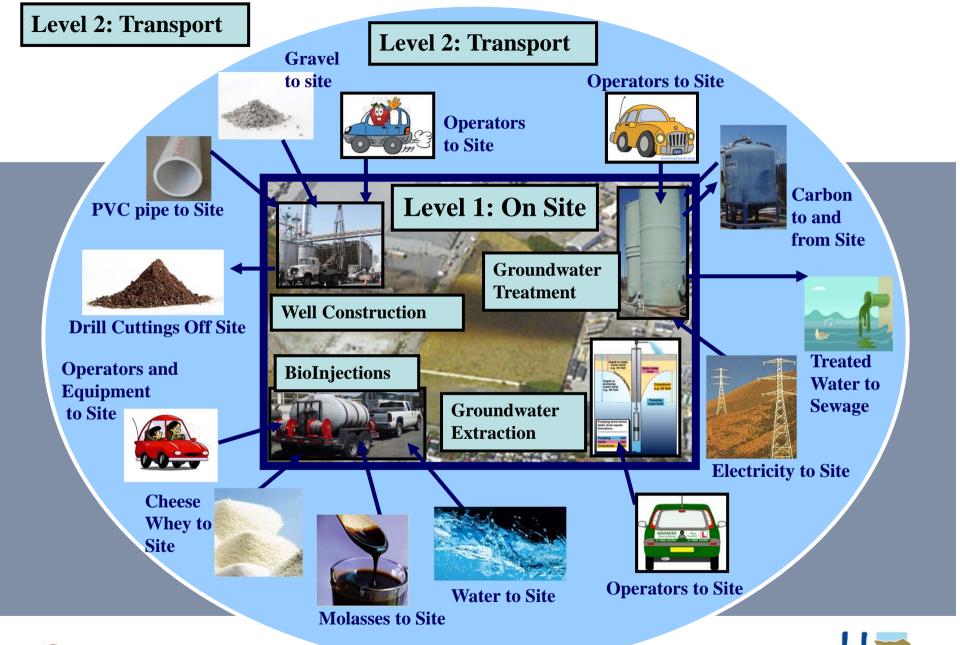
Zusammenführung der Nachhaltigkeitsvaribalen Wir brauchen eine gemeinsame "Währung"

- Wie kombiniert man verschiedene Variablen (in verschiedenen Einheiten)?
 - CO₂ [t], Fläche [m²], Energie [kWh], Wert-/Verlust-steigerung [€]
- Gegenseitige Abhängigkeit der Variablen muss berücksichtigt werden
- Mehrere Lösungsansätze möglich
 - Umwandlung verschiedener Messzahlen in dimensionslose Einheit ohne Wichtung
 - Umwandlung der Messzahlen in einen gemeinsamen Nenner (€oder CO₂-Äquivalente)
 - Entwickeln/Anwenden von Wichtungen zur Darstellung der relativen Bedeutung der unterschiedlichen Kriterien für die beteiligten Projektparteien

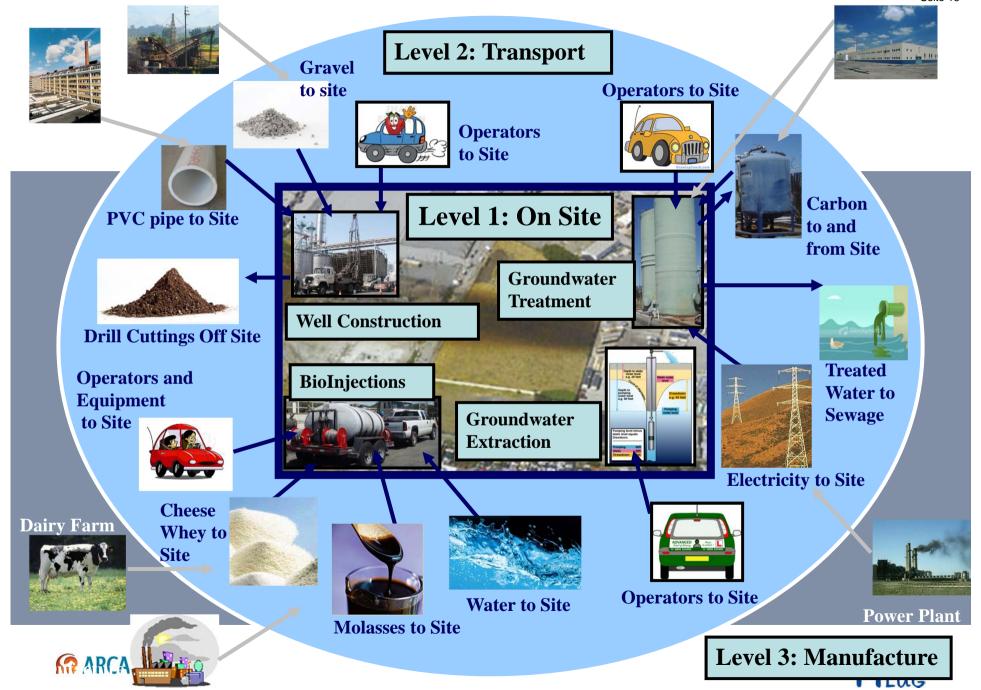
Verfügbare EDV-Tools zur Ökobilanzierung

(Footprint Analysis)

- SiteWiseTM
- Sustainable Remediation Tool (SRTTM)
- GolderSET
- BalancE³ (Arcadis)
- US EPA


US EPA-Ansatz zum Vergleich der Umweltauswirkungen möglicher Sanierungsverfahren

Level 1: On Site



Green Remediation ist ...

... der erste Schritt im Hinblick auf eine umweltfreundliche Sanierung kontaminierter Böden und Grundwasser Ökonomische **Aspekte** Öko-ökonomische Sozio-ökonomische Indikatoren Indikatoren Ökologische Gesellschaftliche **Aspekte Aspekte** Sozio-ökologische Indikatoren

Green Remediation

Nachhaltigkeit

Beispiele

Sustainable Remediation ist ...

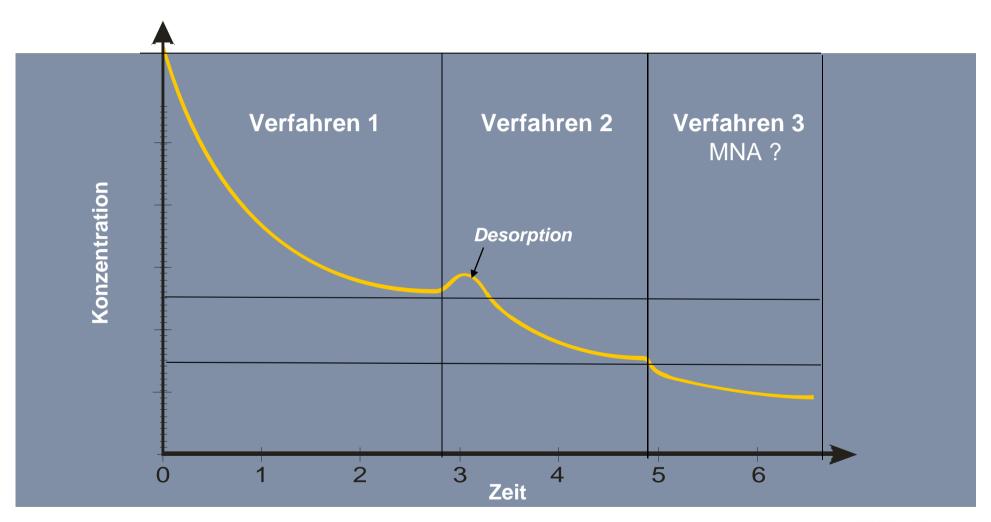
... der Anspruch mit Hilfe von Umwelt-, Ökonomie- und Gesellschafts-indikatoren zu zeigen, dass ein akzeptables Gleichgewicht besteht zwischen den Auswirkungen der Sanierungsaktivitäten und den Nutzen der Sanierung (SuRF) Ökonomische **Aspekte Fokus** "sustainable" Öko-ökonomische Sozio-ökonomische Indikatoren Indikatoren Ökologische Gesellschaftliche **Aspekte Aspekte** Sozio-ökologische Indikatoren

Bewertungsindikatoren für die Nachhaltigkeit von Sanierungen (SURF)

Umwelt	Gesellschaft	Ökonomie
Einfluss auf Atmosphäre (einschl. Klima)	Einfluss auf menschliche Gesundheit und Sicherheit	Direkte und indirekte Kosten-Nutzen-Relation
Einfluss auf Boden	■ Ethische und	Beschäftigung
■ Einfluss auf Wasser	Gerechtigkeitsbetrachtung	□ Kapitalzuwachs
Verbrauch natürlicherRessourcen	Einfluss auf Nachbarschaft und Regionen	: □ Synergien (→ Sanergy)
Abfallbildung	Erfüllung von Richtlinien und Strategien	Projektdauer und Projektrisiken
Intrusiveness (Lärm, Licht gewachsene Natur,	^{t,} □ Beteiligung der Kommuner	n □ Projektflexibilität
Ästhetik, archäologische Ressourcen	Unsicherheit und Evidenz	

Nachhaltigkeit bei der Sanierung Sanierung ist per se nachhaltig?

- Ja, bei bloßer Betrachtung der Gefahrenabwehr (öffentlich-rechtliches Sanierungsziel)
- Einbindung in regionale Entwicklungen (Flächennutzung) wie auch z.B. Transport, Flutrisiken, demographische Entwicklungen ... Sanierung ist dann nur ein Baustein
- Entscheidungen können suboptimal sein im Hinblick auf die Sanierung während das Gesamtsystem (holistische Betrachtung) nachhaltig ist

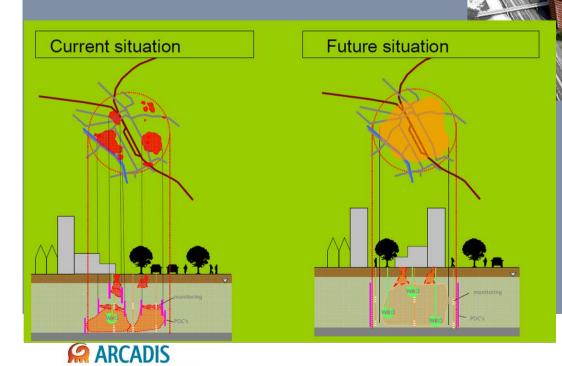


Green Remediation

Nachhaltigkeit

Beispiele

Effizienzsteigerung von Sanierungsmaßnahmen "Treatment Train"



"SANERGY"-Projekt, Bahnhofsareal, Utrecht

■ Kombination von hydraulischer Sicherung / *In-situ-*Sanierung mit Energiegewinnung (Wärme-Kälte-Kopplung)

"Groundwater Management Zone" in stead of separate remediation plans

Green Remediation

Nachhaltigkeit

Beispiele

Green and Sustainable Remediation Ausblick, Vision

- Altlastensanierung im Sinne von Green and Sustainable Remediation aufwerten
- Fachliches Engagement in Verbänden, Ausschüssen, Tagungen
- Einflußnahme auf politische und rechtliche Rahmenbedingungen
- Konsensfähige Kriterienkataloge und Bewertungsmethoden entwickeln bzw. auf Vorhandenem aufbauen
- Pilotanwendungen (Sanierungsplanung, Sanierungsreview)
- Methoden-Validierung (Best Practice definieren)

Green Remediation / Nachhaltigkeit erfordern

- □ (begeisterte) Akteure, Querdenker
- Kosteneinsparungen, Synergieeffekte
- Konkrete und verbindliche Umweltschutzziele
- Fördermittel, Nachhaltigkeitsfond
- Gesellschaftlicher Konsens, politische und rechtliche Rahmenbedingungen
- Kommunale und privatwirtschaftliche Nachhaltigkeitsstrategien
- Zertifizierungssystem "Green Remediation"
- Mehrwert (Immobilie, Image)

