Hessisches Landesamt für Umwelt und Geologie

Intensivmessstelle Frankfurt Flughafen (He) Ergebnisse: Stand 09 / 2005

IDU11-MDHE1101-de

Intensivmessstelle Frankfurt Flughafen (HE). Ergebnisse: Stand 09/2005

Editor: HLUG & EU-EMS

Europ. Env. eJournal

Zusammenfassung

Seit März 2004 ist die Intensiv-Messstelle Frankfurt Flughafen (FFM) im Auftrag des HLUG durch die UMEG in Betrieb.

Die Messstelle besteht aus 3 Messflächen (1 Freifläche, 2 Bestandsflächen) in Transsektanordnung westlich zur Startbahn-West. Gemessen werden Hauptelemente, Schwermetalle und PAK in der Deposition, sowie Hauptelemente und Schwermetalle im Sickerwasser. Des weiteren werden kon-

S1051116

living doc 2005

tinuierliche Messungen von Bodenfeuchte und Saugspannung durchgeführt zur Abschätzung der Sickerfrachten. Klimadaten hierzu werden vom DWD übernommen.

Im vorliegenden Bericht sind Messungen von März 2004 bis Juli 2005 enthalten. Damit stehen zur Beurteilung bislang einjährige aktuelle Messreihen zur Verfügung.

Die Depositionssituation an der Messstelle FFM erweist sich als unauffällig.

Sie entspricht bei den Hauptelementen in etwa dem was im weiteren Umfeld eines Ballungsraums der BRD gegenwärtig zu erwarten ist. Eine Abnahme ist hier gegenüber der Situation 1992/93 (Messungen des HLUG an ähnlicher Position) bei allen Komponenten außer NO₃-N zu verzeichnen, was dem allgemeinen Trend entspricht. Eine Abhängigkeit der Depositionshöhen von der Entfernung

zur Startbahn-West kann nicht festgestellt werden, da sie falls vorhanden - die Bestandsheterogenität nicht überwiegt. Bei den Schwermetallen fallen bislang nur bei Co und Cu erhöhte Depositionen auf, deren Verbindung zum Flugverkehr jedoch unklar ist.

Beispiel PAK: Zieht man einmal die PAK 12- und PAK 8- Depositionen als die methodisch robusteren zum Vergleich heran, so lässt sich die Intensiv-Messstelle FFM für 2004 am ehesten dem weiteren Umfeld eines Ballungsraums zuordnen, ähnlich wie die Intensiv-Messstellen Wilhelmsfeld (ca. 15-20 km östlich Mannheim/Heidelberg) und Baltmannsweiler (ca. 20 km östlich Stuttgart)

Sickerfrachten können bis heute aus methodischen Gründen nur geschätzt werden. Die hier erzielte Schätzung erweist sich nach der NaCl-Methode mit einer sich abzeichnenden Überschätzung um den Faktor 2 als vergleichsweise gut. Eine weitergehende Bewertung kann nur im Rahmen der noch zu erstellenden Stoffbilanzen durchgeführt werden, da weder Prüfwerte für Sickerfrachten noch ausreichend qualitätsgesicherte Vergleichswerte zur Verfügung stehen.

Zur Absicherung aller genannten Befunde müssen längere Zeitreihen abgewartet werden.

U1 Einleitung	2
U2 Methoden	2
U3 Beobachtungsraum	3
U4 Atmosphäre	3
U5 Biosphäre	4
U6 Hydrosphäre	4
U611 Klima und Bodenfeuchte	4
U612 Klima und Sickerraten	4
U613 Sickerwasserprobenmengen	6
U621Sickerwasserkonzentrationen	7
U7 Pedosphäre	13
U8 Frachten	13
U811 Atmosphärische Deposition	13
U841 Sickerfrachten	20
U891 Zusammenschau der Frachten	24
U9 Bilanzen	25
U914 Stoffbilanzen FFM	25
U941 Wasserhaushaltsbilanz FFM	25
Literatur	25
Datenanhang	26

U1 Einleitung

Die Intensiv-Messstelle Frankfurt Flughafen wurde im Auftrag des HLUG im Dezember 2003 von der UMEG fertiggestellt.

Im März 2004 beauftragte das HLUG die UMEG mit der laufenden Wartung, der Probennahme und Analytik an dieser Messstelle. Der beauftragte Messumfang beinhaltete zunächst kontinuierliche Messungen von Wassergehalt und Saugspannung sowie monatliche Probennahme an Depositionssammlern und Sickerwässern sowie die zughörige Analytik. Zusätzlich wurden beauftragt: Juni 2004 Depositionsmessungen auf Grundparameter und Hauptelemente mit PE2-Sammlern, August 2004 die Berechnung der Sickerwasser- und Depositionsfrachten.

Dieser Jahresbericht ist gegliedert gemäß Europ. Env. eJournal.

U2 Methoden

Die Messmethoden sind in unten stehender Tabelle 2.1 auszugsweise dokumentiert.

Messobjekt	Verfahren	Link zur	Probenaufbereitung	Analytik
		Feldmethode		
Deposition SM, As	Bergerhoff	U222-DBW01-de	in Vorbereitung	
Deposition	PE2-Samm-	U222-DBW02-de	Vorbereitung zur Bestim-	Kationen am ICP-OES nach QMV 504-32375-
Grundparameter,	ler		mung gelöster Elemente QMV	0 in Anlehnung an DIN EN ISO 11885-E22,
Hauptelemente			504-32375-0 in Anlehnung	gelöste Anionen mittels Ionenchromatogra-
			an DIN EN ISO 11885-E22	phie nach DIN EN ISO 10304-1, gelöstes
				Ammonium mittels Ionenchromatographie
				nach DIN EN ISO 4911
Bodenfeuchte	FDR-	U2431-DBW01-de	-	-
	Technik			
Saugspannung	Tensio-	U2431-DBW02-de	-	-
	metrie			
Sickerwasser	in-situ	U2421-DBW01-de	Aufschluss zur Bestimmung	Ni, Cu, Co, Zn, Al, Mn, Fe: ICP-OES QMV
	Saugson-		des Gesamtgehaltes QMV	504-32375-0 in Anl. an DIN EN ISO 11885-
	den		504-32375-0 in Anlehnung	E22.
			an DIN EN ISO 11885-E22.	Pb, Cd, As, Cr, Sb am ICP-MS QMV 504-
				32383-0 in Anl. an DIN 38406 -E29
				Kationen am ICP-OES nach QMV 504-32375-
				0 in Anl. an DIN EN ISO 11885-E22.
				Anionen mittels Ionenchromatographie nach
				DIN EN ISO 10304-1
Klima	DWD: Messs	telle Flughafen	-	-
	Frankfurt, Gl	obalstrahlung		
	DWD-Messst	elle Geisenberg		

U3 Beobachtungsraum

Die ausführliche Messstellenbeschreibung mit Messplan und Analysenumfang befindet sich im Papier FFM Chronik unter U32-MDHE1101-de.

Einen kurzen Überblick über Lage und Ausstattung der Intensiv-Messstelle FFM geben die Abblildungen 3.1 bis 3.4.

U4 Atmosphäre

Die Niederschlagsbeschaffenheit an der Messstelle FFM ist in Tabelle 4.1 anhand der statistischen Kennzahlen der mit den PE2-Sammlern gemessenen Niederschlags-Gehalte dargestellt. Die Messungen mit PE2-Sammlern wurden am 14.7.2004 begonnen. Um eine Beeinflussung der Statistik durch jahreszeitliche Effekte zu vermeiden, wurde der Betrachtungszeitraum für den vorliegenden Bericht erweitert auf die inzwischen vorliegenden Ergebnisse bis zum 13.7.2005. Damit liegt ein vollständiges Messjahr zur Auswertung vor. Die gemessenen Gehalte sind als plausibel einzustufen. So sind die Gehalte wie auch die Leitfähigkeiten und pH-Werte durchweg an den Bestandsflächen höher als an der Freifläche, wie es wegen der Kronenraumprozesse auch zu erwarten ist. Zwischen den Bestandsflächen sind die Gehaltsunterschiede nicht bedeutend.

Bei den Niederschlagshöhen fällt auf, dass an der Bestandsfläche FFM-C geringfügig höhere Werte gemessen werden, als an der Freifläche FFM_A. Dies bedeutet, dass die dort platzierten Sammler leicht überproportional durch

Abbildung 3.2: Messplot FFM_A nahe Startbahn West (09/2005)

Abbildung 3.3: Messplot FFM_B

Abbildung 3.4: Messplot FFM_C mit Sickerwassermessfeld (der Messhütte vorgelagert) und Depositionssammlern (links im Hintergrund)

Abbildung 3.1: räumliche Lage und Messausstattung der Intensiv-Messstelle FFM.

Kronentraufe beeinflusst sind.

Die geringen Gehaltsunterschiede der beiden Bestandsflächen während der bisherigen Messperiode lassen keine signifikante Abhängigkeit von der Entfernung zur Startbahn West erkennen und bilden eher die natürliche Heterogenität im betreffenden Waldbestand ab.

Abbildung 4.1 zeigt deutlich den umgekehrten Zusammenhang der PE2-Konzentrationen mit den Niederschlagshöhen. Eine Einschätzung der Depositionssituation ist deshalb nur auf Grundlage der ermittelten Frachten sinnvoll (siehe U8)

U5 Biosphäre

Untersuchungen der Streu wurden nicht durchgeführt.

U6 Hydrosphäre

U611 Klima und Bodenfeuchte

Die Kennwerte zur Beschreibung des Klimas sowie der Bodenfeuchte an der Intensiv-Messstelle FFM sind in Tabelle 611.1 dargestellt. Grundlage dieser Übersichtswerte sind die Tageswerte, die im Zuge der Modellierung des Bodenwasserhaushalts für den Standort plausibilisiert bzw. angepasst wurden (siehe U9).

Die langjährige Jahresniederschlagssumme an der DWD-Messstelle Frankfurt Flughafen beträgt 658 mm (DWD). 2004 ist mit 601 mm Jahresniederschlag somit eher als ein trockenes Jahr einzustufen. Die potentielle Verdunstung übersteigt mit 831 mm die Niederschlagshöhe deutlich.

Für den Boden zeigt sich ab April die beginnende Abtrocknung, die bis in die maximale Messtiefe von 70 cm hinabreicht. Im Oktober setzt dann die Wiederbefeuchtung ein.

U612 Klima und Sickerraten

Einen Überblick über den Zusammenhang zwischen Klima und Sickerraten gibt Tabelle 612.1. Dargestellt sind die Monatssummen verschiedener klimatologischer Wasserhaushaltsglieder sowie die Monatssummen der auf Tagesbasis berechneten Sickerraten (Modell "FFM_medium 2004", siehe ebenfalls U9).

Demnach ist die Interzeptionsverdunstung in dem eher schütteren Bestand mit 50 mm vergleichsweise gering. Die nach Anpassung der Grasreferenzverdunstung an den speziellen Bestand (führt in FFM in der Summe zu einer Reduktion) zur Verfügung stehende potentielle Verdunstung von 791 mm wird aufgrund der Bodentrockenheit im Sommer nicht aufgebraucht.

Tabelle 4.1: Statistische Kennzahlen der gemessenen Grundparameter und Gehalte an PE2-Depositionswässern der Intensiv-Messstelle FFM (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen) Bezugszeitraum: Messperiode 14.7.2004 bis 13.7.2005.

Te	eilfläche	n	fehl.	BG	n <bg< th=""><th>Min</th><th>Max</th><th>10.P</th><th>50.P</th><th>90.P</th><th>MW</th><th>S</th></bg<>	Min	Max	10.P	50.P	90.P	MW	S
Niederschlag/4	Wochen (n	nm)										
-	FFM A	13	0	-	-	9	107	16	41	90	51	31
	FFM B	13	0			9	86	16	41	76	44	26
	FFM C	13	0			14	108	18	40	90	52	30
pH (-)	_											
,	FFM A	13	0	-	-	4.2	7.4	4.3	4.4	5.6	4.7	0.8
	FFM B	13	0			4.2	5.8	4.2	5.2	5.5	4.9	0.6
	FFM C	13	0			4.1	5.4	4.2	4.8	5.2	4.7	0.4
Leitfähigkeit (us	S/cm)											
5 - (1	FFM A	13	0	-	-	11	67	13	23	67	30	19
	FFM B	13	0			17	93	20	31	93	42	25
	FFM C	13	0			19	72	20	35	72	40	18
Cl (ma/l)			-				. –					
0. (FFM A	13	0	0.3	3	< 0.3	3.13	< 0.3	0.78	2.42	1.08	0.94
	FFM B	13	0	0.0	0	0.37	5.02	0.43	2.20	3.52	1.87	1.42
	FFM C	13	0		0	0.43	3.89	0.52	1.72	3.83	1.97	1.35
SQ (ma/l)	0	10	Ū		U	0115	5105	0.52	11/2	5105	1107	1.55
	FFM A	13	0	03	0	1 09	6 77	1 10	2 52	5 98	2 85	1 73
	FFM B	13	0	010	0	1 41	8.08	1 50	3.06	7 54	3 91	2 11
	FFM_C	13	0		0	1 24	7 60	1 42	3 84	6.00	3 77	1 71
NO -N (ma/l)	IIII_C	15	Ũ		U	1.21	7.00	1.12	5.01	0.00	5.77	1.71
110 ₃ 11 (119/1)	FFM A	13	0	0.07	0	0 25	2 82	0.38	0.67	1 48	0.83	0.65
	FFM B	13	0	0107	0	0.50	4 01	0.50	1.05	2 07	1 27	0.89
	FFM C	13	0		0	0.55	3.00	0.69	1.09	2.06	1.23	0.64
NH -N (ma/l)	•		•		U U	0.00	0.00	0.00	1.00	2.00		0.0.
	FFM A	12	1	0.23	2	< 0.23	3.85	<0.23	0.56	2.19	0.82	1.02
	FFM B	13	0		1	< 0.23	1.84	< 0.23	0.94	1.67	0.89	0.54
	FFM C	13	0		1	< 0.23	1.53	<0.23	0.80	1.51	0.78	0.50
Ca (mg/l)	•	10	Ū		-		1.00		0.00	1.01	0170	0.00
	FFM A	13	0	0.05	0	0.22	1.49	0.22	0.47	0.97	0.54	0.34
	FFM B	13	0		0	0.48	2.13	0.54	1.04	1.77	1.02	0.48
	FFM C	13	0		0	0.52	1.99	0.64	0.98	1.61	1.03	0.38
Ma (ma/l)			-		-							
5 (5, 7	FFM A	13	0	0.05	3	< 0.05	0.20	< 0.05	0.07	0.18	0.08	0.06
	FFM B	13	0		0	0.09	0.43	0.11	0.20	0.37	0.23	0.11
	FFM_C	13	0		0	0.10	0.51	0.13	0.23	0.37	0.23	0.11
Na (mg/l)	•	10	•		Ū	0.120	0.01	0.120	0.20	0107	0.20	0.11
	FFM A	13	0	0.06	0	0.11	2.66	0.12	0.30	1.60	0.61	0.73
	FFM B	13	0		0	0.16	3.48	0.17	0.41	2.22	0.87	0.96
	FFM C	13	0		0	0.21	2.61	0.27	0.55	2.01	0.94	0.76
K (mg/l)			•									
(FFM A	13	0	0.08	1	< 0.08	2.93	0.09	0.14	1.75	0.53	0.84
	FFM B	13	0		0	0.98	4.46	1.00	1.75	4,02	2.24	1.15
	FFM C	13	0		0	0.91	3.99	1.03	1.91	3.57	2.06	1.00

Bei den Sickerraten stellen sich im Sommer ab 110 cm Tiefe negative Werte ein (kapillarer Aufstieg aus tiefer liegenden Schichten). Im Bilanzierungsjahr 2004 beträgt die Netto-Wasseraufnahme des modellierten Bodenkörpers (FFM medium: 0 bis 140 cm u. GOK) aus tieferen Schichten 92 mm. Dies entspricht einer deutlichen Grundwasserabsenkung zwischen den Stichtagen 1.1.04 und 31.12.04. Grundwasserstandsmessungen zur Verifizierung liegen nicht vor, sollten aber künftig durchgeführt werden.

U613 Sickerwasserprobenmengen

Die an den Saugflaschen der vier Einbautiefen 0 cm, 10 cm, 30 cm und 60 cm anliegenden Saugdrücke sowie die jeweils damit gewonnenen Sickerwasserprobenmengen sind in Tabelle A-613.1 im Anhang dargestellt.

Wie sich zeigt, sind die gewonnen Mengen stark von den anliegenden Unterdrücken abhängig. Ein Rückschluss aus den gewonnen Mengen auf tatsächliche Sickerraten ist deshalb nicht möglich.

In Tabelle 621.1 ist die statistische Auswertung der Sickerwassermengen dargestellt. Die Performance der Sickerwassergewinnung in FFM kann insofern als gut bewertet werden. So liegt nur in den Tiefen 30 cm und 60 cm die Probenverfügbarkeit unterhalb von 100% (gegenwärtig ca. 75 %).

Im Mittel werden 214 bis 670 ml pro Saugkerze bzw. Saugplatte innerhalb eines Probennahmeintervalls von 4 Wochen entnommen. Bezüglich der Abschätzung möglicher Adsorptionsverluste ist damit eine günstige Basis vorhanden.

	FN Etj		Etpot, Global-		Temp. Feuchte		Tens	Tens	Tens	Tens	FDR	FDR	FDR
		Gras	strahlg.				15 cm	35 cm	55 cm	70 cm	15 cm	35 cm	55 cm
	[mm]	[mm]	[MJ/m ² d]	[m/s]	[°C]	[%]	[hPa]	[hPa]	[hPa]	[hPa]	[Vol%]	[Vol%]	[Vol%]
Jan	70	18	2.6	4.0	2.0	83	-	42	45	38	21.7	20.4	20.2
Feb	19	30	5.6	3.9	4.2	77	-	50	53	45	20.7	19.9	20.0
Mrz	18	52	10.6	3.5	5.8	73	-	57	60	53	20.1	19.4	19.6
Apr	19	92	16.2	3.4	11.6	64	120	88	110	121	17.8	16.9	17.4
Mai	66	111	19.2	2.9	13.3	69	83	82	108	120	18.2	16.8	17.2
Jun	39	135	21.0	3.2	17.6	67	140	183	263	224	15.6	12.0	12.6
Jul	88	128	17.8	3.2	19.0	69	183	202	172	196	15.6	10.7	10.1
Aug	135	116	15.9	3.3	20.1	72	155	116	256	151	17.9	13.1	11.0
Sep	47	87	13.8	3.5	16.0	72	149	137	207	260	17.1	13.6	12.5
Okt	51	35	6.8	2.6	11.3	85	137	124	159	205	18.6	14.7	12.8
Nov	27	17	3.4	3.5	5.5	87	62	57	54	53	20.3	17.7	16.9
Dez	22	10	1.9	2.9	1.4	90	63	55	51	45	20.1	17.8	18.2
2004	601	831	11.2	3.3	10.7	76	121	99	128	126	18.6	16.1	15.7

Tabelle 611.1: Monatssummen bzw. Monatsmittel und Jahreswerte verschiedener Klima- und Bodenfeuchte-Kennwerte für die Intensiv-Messstelle FFM im Jahr 2004.

Tens (Tensiometer n=4) und FDR (FDR-Wassergehaltssonden n=3): Mittelwerte der 00:00 Uhr - Messungen an

Windgeschwindigkeit, Temperatur und Luftfeuchte: DWD-Messstelle Frankfurt Flughafen

Globalstrahlung: DWD-Messstelle Geisenheim ETpot, Gras: Grasreferenzverdunstung nach DVWK 238/1996

FN: Freilandniederschlag DWD-Messstelle Frankfurt Flughafen angepasst für FFM_C nach PE2-Daten und Blitzarchiv

Sickerwassermessfeld FFM_C

U621 Sickerwasserkonzentrationen

Die statistische Auswertung der gemessenen Sickerwasserkonzentrationen ist in Tabelle 621.1 dargestellt. Der Bezugszeitraum umfasst den 24.3.04 bis 23.3.05. Damit liegt ein komplettes Messjahr der Beurteilung zu Grunde (Sickerraten sind modelliert für den 1.1.04 - 31.12.04).

Die Plausibilisierung der Analysenergebnisse kann nach einem Jahr der Messungen zunächst lediglich durch Vergleich innerhalb der Zeitreihe erfolgen (Abbildungen 621.1 bis 621.3). Vor dem Hintergrund natürlicher Schwankungen der Sickerwasserkonzentrationen erweisen sich die Messungen insofern als plausibel, als dass keine Ausreißer vorhanden sind. Nur bei Fe und As mit Probennahme am 19.5.04 mussten die Werte für 30 cm Tiefe gelöscht werden. Durch den Bruch einer Saugkerze kam es zu sichtbaren Probenveränderungen. Die entsprechende Saugflasche 18/30cm wurde abgeklemmt.

Beginn der Sickerwassergewinnung in FFM ist der 24.3.2004. Einbaueffekte, die sich durch tendentielle Zu- oder Abnahmen bemerkbar machen würden, sind nicht offensichtlich. Bei den Hauptelementen in 0 cm Tiefe (Humuslysimeter) zeigt sich eine kontinuierliche Abnahme der Konzentrationen im Untersuchungsintervall, die möglicherweise auf eine langsam abklingende Mobilisierung durch den Einbau mit zurückzuführen ist. Eine Klärung ist nur anhand längerer Zeitreihen möglich.

Im bisher vorliegenden Kollektiv fallen hohe Werte auf am 14.7.04 in 60 cm Tiefe bei Arsen, sowie am 16.6.04 in 30 cm Tiefe bei Cadmium, die aber gegenwärtig noch nicht weiter bewertet werden können.

Die vorliegenden Sickerwasserkonzentrationen werden deshalb bis auf weiteres zur Berechnung der Sickerfrachten verwendet (U8).

	FN	IZ	BN	INF	ET pot	E	т	SR	SR	SR	SR	SR	SR
								0 cm	10 cm	30 cm	60 cm	110 cm	140 cm
Jan	70	1.4	69	68	10	0.2	7	63	62	59	54	44	35
Feb	19	0.4	19	17	18	0.6	16	23	23	24	25	27	26
Mrz	18	0.4	18	19	31	0.6	27	19	18	16	13	10	3
Apr	19	0.4	19	16	65	2.0	62	15	12	8	6	-4	-13
Mai	66	5.4	61	59	98	1.8	91	56	50	36	15	-10	-27
Jun	39	3.9	35	34	145	1.1	109	29	22	8	1	-10	-38
Jul	88	9.9	79	77	140	0.4	88	71	56	27	0	-8	-35
Aug	135	10.8	124	124	126	0.2	90	104	93	70	22	-7	-30
Sep	47	5.9	40	40	100	0.0	89	48	43	31	17	-5	-23
Okt	51	5.3	45	45	36	0.0	34	43	40	35	22	-2	-10
Nov	27	4.0	23	23	14	0.0	14	27	27	27	25	13	4
Dez	22	2.5	19	19	8	0.0	7	18	17	16	16	16	16
2004	601	50	550	541	701	7	633	515	463	357	216	63	-92

Tabelle 612.1: Monatssummen verschiedener klimatologischer Wasserhaushaltsglieder und Sickerraten an der Intensiv-Messstelle FFM im Jahr 2004 gemäß Modellierung "FFM_medium 2004".

FN: Freilandniederschlag DWD-Messstelle Frankfurt Flughafen angepasst für FFM_C nach PE2-Daten und Blitzarchiv

IZ: Interzeptionsverdunstung nach IZ_Modell anhand PE2-Bestand zu PE2-Freifläche BN: FN - IZ bzw. PE2-Bestand

ET pot: ET pot, Gras mit jahreszeitlichen Bestandsfaktoren (vergl. crop- bzw. stand-coefficients) verrechnet, siehe U9

E: Evaporation (Verdunstung von Bodenoberfläche) bzw. BN - INF (beachte: Summe aus Rundungsfehlern)

T: Transpiration

SR: Sickerraten in den entsprechenden Bodentiefen (Untergrenze Modell FFM_medium 2004: 140 cm u. GOK, siehe U9)

INF: Infiltration

Tabelle 621.1: Statistische Kennzahlen der Sickerwassermengen,	Grundparameter	und Sickerwasser-
konzentrationen an der Intensiv-Messstelle FFM 2004; Bezugszeit	raum 24.3.04 bis	23.3.05.

	Tiefe	n	fehl.	BG	Min	Max	10.P	50.P	90.P	MW	S
Probenmenge (ml/Sau	asonde und	4 Woch	nen)								
5	0 cm	13	0	-	22	540	46	132	508	214	165
	10 cm	13	0		103	1081	287	835	947	670	293
	30 cm	13	0		0	1330	3	64	1065	350	471
	60 cm	13	0		0	633	0	178	621	267	260
Sickerrate modelliert (mm)										
	0 cm	10	3	-	14	80	15	40	79	41	24
	10 cm	10	3		13	75	13	34	70	36	21
	30 cm	10	3		7	64	9	25	50	26	17
	60 cm	10	3		0	29	0	12	26	12	10
рН (-)											
	0 cm	13	0	-	3.4	3.8	3.4	3.7	3.8	3.7	0.2
	10 cm	13	0		3.6	4.1	3.7	3.9	4.1	3.9	0.2
	30 cm	10	3		3.8	4.2	3.8	4.0	4.2	4.0	0.1
	60 cm	11	2		3.8	4.2	3.8	4.0	4.1	4.0	0.1
Leitfähigkeit (µS/cm)											
	0 cm	13	0	-	86	388	107	167	344	196	96
	10 cm	13	0		118	373	125	172	372	204	85
	30 cm	10	3		99	252	11/	163	238	1/0	46
	60 CM	11	2		113	376	114	157	370	203	96
CI (mg/I)	0.000	12	0		0.4	0.2	0.0	2.0	0.1	2.0	2.1
	0 cm	13	0		0.4	9.2	0.9	3.0	9.1	3.8 4.2	3.1
	10 CIII 20 cm	10	2		1.2	7.1	1.0	4.Z	7.0	4.5	2.0
	50 cm	10	2		47	13.3	5.2	5.9 7 0	9.2	5.0	2.5
NO3-N (mg/l)	00 cm	11	2		ч./	15.5	5.2	7.0	11.0	7.7	2.5
((iig/i)	0 cm	13	0		0.9	26.4	2.2	4.9	23.4	10.2	8.6
	10 cm	13	0		5.7	35.4	7.3	13.1	33.8	16.3	9.3
	30 cm	10	3		8.1	20.2	8.3	11.9	19.2	12.7	4.0
	60 cm	11	2		2.2	33.9	2.3	10.0	33.6	13.7	11.8
SO4 (mg/l)											
	0 cm	13	0		3.0	13.8	3.3	6.0	10.7	6.8	2.9
	10 cm	13	0		7.2	12.2	7.5	8.4	11.0	8.8	1.4
	30 cm	10	3		6.4	15.6	7.1	9.5	14.8	10.4	3.0
	60 cm	11	2		15.3	24.5	15.9	20.7	24.2	20.1	3.4
Ca (mg/l)											
	0 cm	13	0	0.2	4.0	19.2	4.9	7.1	16.4	9.2	4.6
	10 cm	13	0		5.0	18.1	5.6	7.6	16.8	9.0	4.0
	30 cm	10	3		4.2	8.7	4.3	5.6	8.6	5.9	1.6
	60 cm	11	2		2.4	10.6	2.9	4.7	9.7	5.5	2.5
Mg (mg/l)											
	0 cm	13	0	0.2	0.7	4.3	0.9	1.5	3.6	1.9	1.1
	10 cm	13	0		1.3	4.2	1.5	2.0	4.1	2.3	0.9
	30 cm	10	3		1.4	3.0	1.5	1.9	3.0	2.0	0.5
	60 CM	11	2		0.9	3.9	1.2	1.6	3.6	2.0	0.9
iva (mg/i)	0.cm	12	0	0.2	0 5	2 5	0.6	1.0	2.2	1 2	0.9
	10 cm	12	0	0.2	1.3	3.5	1.0	2.1	2.5	2.4	0.8
	30 cm	10	3		1.5	4.0	1.4	2.1	4.0 5 Q	2.4 4 2	1.1
	60 cm	11	2		3.2	8.2	3.9	53	7.8	5.6	1.0
	00 011		2		5.2	5.2	5.5	5.5	7.0	5.0	1.7

							,				
	Tiefe	n	fehl.	BG	Min	Max	10.P	50.P	90.P	MW	S
K (mg/l)											
	0 cm	13	0	0.02	1.0	16.0	1.2	2.9	15.8	6.2	5.5
	10 cm	13	0		2.6	12.0	3.4	6.1	11.3	6.5	2.8
	30 cm	10	3		1.2	2.7	1.4	2.0	2.6	2.0	0.5
	60 cm	11	2		1.1	2.1	1.1	1.3	1.9	1.4	0.3
Al (µg/l)											
	0 cm	13	0	6	1042	2760	1204	1597	2120	1651	418
	10 cm	13	0		2616	10171	3094	4482	9729	5355	2352
	30 cm	10	3		2407	5885	2652	3806	5675	3918	1115
	60 cm	11	2		1300	14674	1485	3101	14331	5937	5039
Mn (µg/l)	_			_							
	0 cm	13	0	7	1302	6398	1732	3041	6312	3539	1647
	10 cm	13	0		1258	4925	1268	2185	4/05	2500	1188
	30 cm	10	3		1153	3331	1294	2264	3238	2248	/49
- (())	60 cm	11	2		1342	/168	1600	3032	6825	3764	1978
Fe (µg/I)	0	10	0	10	202	1025	200	624	1010	660	217
	0 cm	13	0	10	303	1025	389	175	1019	008	217
	10 cm	15	0		124	430	144	1/5	26	212	0/ 7
	50 cm	9	4		10	20	17	22	21	24	7
Ph (ug/l)	00 CIII	11	2		12	52	15	27	21	25	/
FD (µg/I)	0 cm	13	0	0 1	21.2	38 5	23.1	30.0	36.6	30.5	5.0
	10 cm	13	0	0.1	3 1	11 4	23.1 4 1	74	11 3	74	2.8
	30 cm	10	3		2.2	10.5	2.5	4 5	94	5.6	2.0
	60 cm	11	2		1.2	18.3	1.3	3.4	17.1	5.9	6.0
Cd (ua/l)	oo ciii		-		1.2	10.5	115	511	17.1	515	0.0
	0 cm	13	0	0.1	0.6	2.5	0.6	1.0	1.9	1.2	0.6
	10 cm	13	0		0.5	2.9	0.8	1.3	2.8	1.5	0.7
	30 cm	10	3		1.1	7.3	1.2	1.6	5.1	2.4	1.8
	60 cm	11	2		0.7	5.0	0.9	1.7	4.3	2.3	1.4
Ni (µg/l)											
	0 cm	13	0	0.6	7.1	26.2	8.5	9.5	20.3	12.0	5.2
	10 cm	13	0		11.1	43.7	12.9	18.5	40.4	21.3	9.8
	30 cm	10	3		16.3	30.9	16.8	19.3	29.8	21.4	4.9
	60 cm	11	2		11.5	46.9	14.1	23.1	43.5	26.1	10.7
As (µg/l)											
	0 cm	13	0	0.1	1.5	3.2	1.5	2.2	2.8	2.2	0.6
	10 cm	13	0		1.8	5.3	1.8	2.6	4.5	2.8	1.1
	30 cm	9	4		0.3	1.5	0.4	0.9	1.5	0.9	0.4
	60 cm	11	2		0.4	10.6	0.4	3.3	8.7	3.7	3.1
Cr (µg/l)											
	0 cm	13	0	0.1	1.3	3.9	1.6	2.0	3.3	2.3	0.8
	10 cm	13	0		2.6	3.7	2.6	3.2	3.5	3.1	0.4
	30 cm	10	3		0.2	1.2	0.2	0.4	1.0	0.5	0.3
	60 cm	11	2		0.3	1.3	0.3	0.4	1.0	0.5	0.3
Cu (µg/l)											
	0 cm	13	0	1	21.2	55.5	23.8	34.2	51.3	35.8	10.4
	10 cm	13	0		10.4	25.9	12.3	14.3	23.5	16.8	4.8
	30 cm	10	3		1.9	4.2	2.0	2.5	3.8	2./	0.7
	60 CM	11	2		1.9	5.0	2.1	2.9	5.0	3.1	1.1

Tabelle 621.1 (Forts.): Statistische Kennzahlen der Sickerwassermengen, Grundparameter und Sickerwasserkonzentrationen an der Intensiv-Messstelle FFM 2004; Bezugszeitraum 24.3.04 bis 23.3.05.

							,				
	Tiefe	n	fehl.	BG	Min	Max	10.P	50.P	90.P	MW	S
Co (µg/l)											
	0 cm	13	0	0.8	1.6	7.1	1.7	2.2	5.3	3.0	1.6
	10 cm	13	0		4.1	18.0	4.7	7.9	16.3	9.0	4.1
	30 cm	10	3		5.6	33.4	6.4	14.2	30.1	16.4	9.1
	60 cm	11	2		14.9	37.3	15.0	22.1	33.8	23.7	6.7
Zn (µg/l)											
	0 cm	13	0	10	62	281	67	94	211	124	63
	10 cm	13	0		69	284	79	127	265	146	66
	30 cm	10	3		101	189	102	124	183	132	29
	60 cm	11	2		38	255	46	81	250	126	77
Sb (µg/l)											
	0 cm	13	0	0.2	0.2	1.1	0.2	0.4	1.0	0.5	0.3
	10 cm	13	0		<0.2	0.4	<0.2	0.3	0.3	0.2	0.1
	30 cm	10	3		-	<0.2	-	-	-	-	-
	60 cm	11	2		-	<0.2	-	-	-	-	-

Tabelle 621.1 (Forts.): Statistische Kennzahlen der Sickerwassermengen, Grundparameter und Sickerwasserkonzentrationen an der Intensiv-Messstelle FFM 2004; Bezugszeitraum 24.3.04 bis 23.3.05.

Plausibilisierung Sickerwasser FFM 24.3.04 bis 23.3.05

Tiefe	Handlung	Parameter	Messwert	Zeit	Anmerkung
10 cm	-	-	-	-	-
20 cm	-	-	-	-	-
30 cm	gelöscht	Fe	568 µg/l	21.419.5.04	Saugkerze 18/30 cm gebrochen. Sichtbarer
		As	9,75 µg/l		Bodensatz, nur Fe und As betroffen
60 cm	-	-	-	-	-

Abbildung 621.1: Grundparameter und Hauptelemente im Sickerwasser an der Intensiv-Messstelle FFM 2004; Bezugszeitraum 24.3.04 bis 23.3.05.

Abbildung 621.2: Schwermetalle und Arsen im Sickerwasser an der Intensiv-Messstelle FFM in Bezug zur modellierten Sickerrate im Zeitraum 24.3.04 bis 23.3.05.

U7 Pedosphäre

2004 wurden keine Untersuchungen der Pedosphäre durchgeführt.

U8 Frachten

U811 Atmosphärische Deposition

Die mit **PE2-Sammlern** bestimmten Depositionsfrachten **(Hauptelemente)** sind in Tabelle 811.1 dargestellt. Neben den Frachten der Einzelintervalle sind die Jahresfrachten für den Zeitraum 14.7.04 bis 13.7.05 dargestellt (2004*).

Die ermittelten Frachten der Hauptelemente können als plausibel angesehen werden, Ausreisser liegen bisher nicht vor. Die tendentiell höheren Depositionen liegen erwartungsgemäß in der trockenen Jahreszeit, die Depositionen sind in den Beständen höher, als auf der Freifläche.

Eine Ausnahme bilden die Protonenfrachten zunächst wegen der Kronenraumpufferung. Sie weisen aber auch eine starke Streuung auf, die methodisch bedingt ist: die Berechnungen basieren auf pH-Messungen an recht pufferschwachen Lösungen, an denen schon geringe mikrobielle Umsetzungen starke pH-Änderungen zur Folge haben. Diese treten während des relativ langen Sammelintervalls von 4 Wochen in unterschiedlichster Richtung und Umfang auf. Die Protonenfrachten sind insofern als nicht plausibel einzustufen (siehe auch Vergleichswerte).

Die Plausibilität aller übrigen Messungen wird auch anhand eines Vergleichs der berechneten Jahressummen deutlich (Tabelle 811.2).

Die in FFM für den Zeitraum 14.7.04 bis 13.7.05 berechneten Werte liegen demnach im Bereich der Werte, die gegenwärtig an den Intensiv-Messstellen Baden-Württembergs gemessen werden (UMEG 2004), mit der Tendenz hin zu den dort gemessenen Minimalwerten.

Im Vergleich jedoch zu den Werten die in FFM 1992/93 gemessen wurden (Schneider 1995, siehe Tabelle 811.2), liegen die Werte in 2004 deutlich niedriger. Da es sich bei den 1992/93 untersuchten Flächen, insbesondere der Freifläche um andere handelt, als die aktuellen, kann hieraus nicht zwingend auf eine allgemeine Verbesserung bei der Depositionssituation geschlossen werden, wenngleich eine solche sicher auch im Raum Frankfurt stattgefunden haben dürfte, wie allgemein in der BRD beobachtbar (vergl. z. B. Ihle et al 2001).

Tabelle 811.1: Depositionen (PE2-Sammler) an der Intensiv-Messstelle FFM (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen) im Zeitraum 14.7.04 bis 13.7.05.

KW von	29	33	37	41	45	49	53 ²⁰⁰⁴	4	8	12	16	20	24	2004*
KW bis	33	37	41	45	49	53	4 ²⁰⁰⁵	8	12	16	20	24	28	(/ha a)
Niederschlag (mm)														
FFM	-A 107	77	49	41	24	18	27	37	9	83	85	32	74	663
FFM	-B 86	71	42	41	18	18	23	30	9	74	73	25	67	578
FFM	-C 108	79	50	40	27	18	30	39	14	85	86	27	71	674
Prot. (mol/ha 4KW)														
FFM	-A 42.6	37.6	7.7	13.1	4.9	1.4	16.8	17.1	4.3	38.9	42.8	0.01	9.4	237
FFM	-B 5.4	9.0	2.6	0.7	0.9	0.6	12.2	17.4	5.3	43.6	4.6	9.9	3.3	116
FFM	-C 8.6	10.2	7.9	1.8	2.5	4.8	18.0	32.3	6.1	37.2	13.6	13.7	11.2	168
Cl (kg/ha 4KW)														
FFM	-A 0.20	0.24	0.26	0.10	0.22	0.41	0.47	0.60	0.29	1.46	0.24	0.25	0.15	4.9
FFM	-B 0.32	0.36	0.97	1.01	0.47	0.54	0.51	0.95	0.46	0.63	0.55	0.15	0.29	7.2
FFM	-C 0.47	0.50	0.85	0.78	0.69	0.67	1.05	1.48	0.55	0.78	0.73	0.31	0.38	9.2
SO₄ (kg/ha 4KW)														
FFM	-A 2.72	0.84	0.79	0.67	0.59	0.63	0.59	1.02	0.62	4.80	1.61	1.17	0.81	16.9
FFM	-B 2.62	1.09	1.18	1.19	0.96	1.31	1.15	1.44	0.73	3.05	1.65	0.58	0.94	17.9
FFM	-C 4.43	1.17	1.27	1.35	1.03	1.40	1.51	1.64	0.79	3.35	2.12	0.95	0.88	21.9
NO ₃ -N (kg/ha 4KW)														
FFM	-A 1.05	0.19	0.23	0.17	0.17	0.15	0.18	0.35	0.26	0.95	0.57	0.14	0.31	4.7
FFM	-B 1.35	0.39	0.45	0.21	0.19	0.24	0.24	0.43	0.36	0.95	0.37	0.26	0.70	6.1
FFM	-C 1.58	0.43	0.54	0.29	0.22	0.24	0.31	0.45	0.42	1.20	0.69	0.50	0.56	7.4
NH ₄ -N (kg/ha 4KW)														
FFM	-A 0.62	-	0.11	0.10	0.15	0.13	0.14	0.20	0.07	1.23	0.29	1.22	0.01	4.6
FFM	-B 1.40	0.43	0.39	0.19	0.18	0.24	0.22	0.27	0.17	0.90	0.00	0.02	0.43	4.8
FFM	-C 1.47	0.39	0.40	0.33	0.15	0.21	0.24	0.25	0.21	1.28	0.47	0.00	0.00	5.4
Ca (kg/ha 4KW)														
FFM	-A 0.90	0.17	0.28	0.16	0.09	0.13	0.06	0.11	0.14	0.33	0.40	0.17	0.36	3.3
FFM	-B 1.03	0.35	0.45	0.32	0.22	0.30	0.24	0.34	0.19	0.51	0.40	0.16	0.43	4.9
FFM	-C 1.08	0.42	0.57	0.43	0.26	0.36	0.29	0.33	0.21	0.62	0.58	0.23	0.80	6.2
Mg (kg/ha 4KW)														
FFM	-A 0.07	0.02	0.04	0.02	0.02	0.03	0.03	0.04	0.02	0.05	0.04	0.00	0.03	0.4
FFM	-B 0.14	0.06	0.08	0.11	0.07	0.06	0.06	0.08	0.04	0.09	0.12	0.03	0.08	1.0
FFM	-C 0.17	0.08	0.12	0.09	0.07	0.09	0.09	0.09	0.05	0.12	0.15	0.05	0.10	1.3
Na (kg/ha 4KW)														
FFM	-A 0.12	0.11	0.19	0.06	0.13	0.24	0.19	0.40	0.24	0.10	0.17	0.09	0.16	2.2
FFM	-B 0.15	0.19	0.24	0.14	0.16	0.27	0.26	0.58	0.32	0.30	0.19	0.06	0.10	2.9
FFM	-C 0.23	0.28	0.47	0.22	0.23	0.34	0.44	0.69	0.37	0.45	0.33	0.10	0.20	4.4
K (kg/ha 4KW)														
FFM	-A 0.12	0.09	0.07	0.03	0.03	0.03	0.02	0.38	0.27	0.30	0.15	0.46	0.08	2.0
FFM	-B 1.23	0.70	0.76	1.84	0.55	0.29	0.30	0.46	0.35	0.74	2.35	0.78	1.16	11.5
FFM	-C 1.89	0.87	0.95	1.59	0.93	0.38	0.40	0.42	0.36	0.78	2.06	0.85	0.75	12.2

Tabelle 811.2: Vergleichswerte für Hauptelement-Depositionen an Intensiv-Messstellen (¹ Schneider (1995), ² Jahresmittelwerte Intensiv-Messstellen Baden-Württembergs (z. T. berechnet aus BG/2-Werten (UMEG 2004))

	Flächentyp	Zeitraum	Prot.	CI	SO₄	NO ₃ -N	NH₄-N	Ca	Mg	Na	к
/(ha a)			mol/	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/
Freifläche alt 1	Freiland	1992/93	-	10.4	35.5	4.6	8.9	13.3	2.2	9.5	6.0
Parzelle 13 1	Bestand	1992/93	-	16.4	75.9	11.6	14.0	17.4	3.5	11.3	13.3
Baltmannsweiler ²	Freiland	2003/04	66.8	4.0	13.5	5.1	3.3	4.2	2.0	7.3	2.4
	Bestand	2003/04	72.2	8.4	23.3	14.6	6.4	9.5	2.0	4.8	17.7
Forst ²	Freiland	2003/04	26.1	23.5	13.0	5.5	4.0	7.7	1.7	16.8	2.2
	Bestand	2003/04	21.6	101.7	40.9	14.2	10.1	21.5	3.9	57.6	22.1
Kehl ²	Freiland	2003/04	29.3	3.5	16.1	6.7	8.8	7.9	2.0	6.0	5.3
Trochtelfingen ²	Freiland	2003/04	24.1	2.7	8.1	3.3	5.9	3.3	1.8	6.3	2.7
Wilhelmsfeld ²	Freiland	2003/04	50.9	5.5	17.6	6.1	5.0	9.3	3.0	8.5	3.9
	Bestand	2003/04	75.5	11.9	37.4	13.3	7.7	10.0	2.7	7.3	18.7

Die gemessenen **Bergerhoff-Depositionen** im Jahresverlauf sowie die daraus für 2004* (Bezug 24.3.04 - 23.3.05) berechneten Jahresmittelwerte und -summen zeigt Tabelle 811.3.

Es liegen keine Ausreißer vor, mit Ausnahme von Al, FFM_B im Messintervall mit Probennahmetermin 16.6.2004 (möglicherweise auch FFM_C 16.6.04 und 24.205, hier sind zur Beurteilung noch längere Zeitreihen abzuwarten.

Größere zeitliche Streuungen treten bei Co in der Freifläche auf, die aber bislang nicht beurteilt werden können. Mn streut innerhalb des Bestands stark, was wegen des Leaching im heterogenen Bestand plausibel ist (FFM_B weist einen gegenüber FFM_C dichteren Bestand auf). Sonst sind die Streuungen innerhalb des Bestands recht gering.

Insofern können die Messungen als plausibel angesehen werden.

Bei Co, Cu (weniger deutlich bei Zn und Pb, evtl. auch bei Al) lagen die Depositionen 2004 nahe der Startbahn West über den weiter entfernt gelegenen Bestandsflächen. Eine Beeinflussung durch den Flugverkehr ist somit naheliegend, wenn auch hieraus allein noch nicht abzusichern (zeitliche Streuungen, bisher sind die Streufrachten noch unberücksichtigt).

Bei allen anderen Komponenten liegen die Bestandsdepositionen etwas über denen der Freifläche. Die Unterschiede sind jedoch gering.

Zur Bewertung der Bergerhoff-Depositionen ergibt ein Vergleich mit den Hintergrundwerten für Atmosphärische Depositionen, Stand 03.2004, nur Freiflächen (WG85 2004) eine Depositionssituation vergleichbar mit Messorten im Aussenbereich bis Siedlungsbereich. Auffallend sind die wohl etwas erhöhten Co- und Cu-Depositionen an der Messstelle FFM, deren Verbindung zum Flughafenbetrieb noch unklar ist*. Bei Pb fallen die sehr geringen Depositionen auf. Falls dies anhaltend der Fall sein sollte, wäre auch hier der Zusammenhang noch zu klären. Alle anderen Depositionen sind dagegen unauffällig und entsprechen dem Spektrum, das in einem Siedlungsbereich der BRD zu erwarten ist.

*Hierzu ein weiterer Vergleich:

Messung FFM_A 2004* 182 g/ha a Cu und 6,5 g/ha a Co. Im Raum Kehl/Strasbourg wurden 2004 156 g/ha a Cu bzw. 2,04 g/ha a Co gemessen, im Nahbereich der Autobahn A5 102 g/ha a Cu bzw. 2,28 g/ha a Co.

	Messort	Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan	Feb	Mrz	Apr	Mai	MW 2004*	2004*
	Intervallende	16.6		-	8.9			1.12		24.2		•	18.5		23.03.05
	_							(µg/m²	d)						(g/ha a)
Pb															
	FFM_A	2.95			3.46			4.37		2.56			4.56	3.43	12.5
	FFM B	2.35			2.72			4.59		3.16			3.38	3.22	11.7
	FFM_C	2.40			2.80			4.75		3.56			3.75	3.41	12.4
Cd															
	FFM A	0.50			0.26			0.17		0.25			0.21	0.29	1.0
	FFM B	0.21			0.42			0.38		0.43			0.27	0.35	1.3
	FFM C	0.17			0.46			0.26		0.24			0.25	0.28	1.0
Ni															
	FFM A	6.53			4.32			2.94		4.27			2.89	4.39	16.0
	FFM B	6.39			6.35			4.49		3.44			3.52	5.04	18.3
	FFM_C	4.86			5.36			4.58		3.23			3.36	4.42	16.1
As															
	FFM A	0.49			0.70			0.33		0.32			0.49	0.46	1.7
	FFM B	0.52			1 00			0.63		0.32			0.57	0.10	23
	FFM_C	0.52			0.97			0.52		0.30			0.57	0.55	2.5
V	IIII_C	0.50			0.57			0.52		0.55			0.55	0.50	2.1
v	FEM A	2 15			3 78			1 69		1 51			2 1 3	2 27	83
	EEM B	2.15			103			2.09		1.51			2.13	2.27	0.5
		2.19			4.95			2.22		1.60			2.05	2.73	9.9
C٣	FFM_C	2.35			4.04			2.22		1.02			2.22	2.07	9.7
CI		2 25			167			7 40		2 20			2.04	2 0 2	10.7
		2.25			4.07			2.40		2.20			2.04	2.93	14 5
		3.59			0.00			2.00		2.95			2.24	3.90	14.5
Ca	FFM_C	3.00			0.35			2.91		2.02			3.35	3.63	15.9
CO		1 44			4 20			1 4 4		0.25			0.22	1 70	6 5
		1.44			4.30			1.44		0.35			0.33	1.78	0.5
		0.54			1.04			0.00		0.40			0.30	0.67	2.4
C	FFM_C	0.55			0.90			0.69		0.34			0.38	0.60	2.2
Cu		26			50			75		22			50	50	102
	FFM_A	36			56			/5		33			50	50	182
	FFM_B	25			49			35		26			36	34	124
_	FFM_C	26			43			31		37			32	34	124
Zn								6 7							200
	FFM_A	88			142			6/		36			3/	80	290
	FFM_B	63			187			61		48			40	86	313
	FFM_C	/9			102			/4		34			40	/0	254
Mn															
	FFM_A	46			32			27		115			23	53	192
	FFM_B	497			1279			3566		455			448	1372	4995
	FFM_C	279			627			2623		980			310	1066	3881
AI															
	FFM_A	497			744			455		177			286	454	1652
	FFM_B	8*			504			605		188			111	310	1381
	FFM_C	69			533			647		41			226	314	1144
Fe															
	FFM_A	378			845			486		316			577	511	1860
	FFM_B	523			957			527		358			590	590	2149
	FFM C	562			915			519		336			651	588	2139

Tabelle 811.3: Bergerhoff-Depositionen 2004* (Zeitraum 24.3.04 bis 18.5.05; Jahreswerte bis 23.3.05) an der Intensiv-Messstelle FFM (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen)

* = Ausreisser: bei Berechnung der Jahresfracht durch Jahresmittelwert ersetzt

Die mit den **PAK-Sammlern** nach DIN 19739 ermittelten Depositionen im Einzelnen sind in Tabelle 811.4 dargestellt.

Abbildung 811.2 zeigt den zeitlichen Verlauf an den 3 Messpunkten anhand der gemessenen Einzelwerte exemplarisch für die PAK 12- Depositionen.

Die Streuungen zwischen den jeweils 2 Parallelsammlern sind uneinheitlich. An Messpunkt FFM_A wurde am 1.12.2004 eine Vogelvergrämung an den PAK-Sammlern angebracht. Die zuvor feststellbaren höheren Streuungen haben dort seitdem abgenommen. Eine mögliche Beeinflussung besteht hier nicht in einem zusätzlichen Eintrag durch Vogelkot, sondern durch Matrixprobleme bei der Extraktion und Phasentrennung. Insgesamt ist dieser Effekt bezüglich der Jahreswerte aber nicht von Bedeutung. Die teilweise vorhandenen hohen Streuungen an den Bestandsmessflächen FFM_B und FFM_C sind aufgrund der Heterogenität nachvollziehbar.

Ein wenig undeutlich ist der bisher feststellbare Jahreszeitliche Verlauf. Wie zu erwarten fallen die Minima zwar in die Sommermonate, die Maxima jedoch scheinen in den Frühling hinein verschoben. Hier sollten noch längere Zeitreihen zur Bestätigung abgewartet werden.

Insgesamt können die gemessenen PAK-Depositionen demnach als plausibel angesehen werden.

Vergleicht man die berechneten Jahresdepositionen 2004* (März 04 bis März 05) der drei Messorte miteinander (Abbildung 811.3), so zeigt sich kein nennenswerter Unterschied. Lediglich bei PAK 8 zeigt sich eine leichte Abnahme mit der Entfernung zur Startbahn West, die jedoch nach nur einem Messjahr noch im Bereich der natürlichen Streuungen liegen kann. Zudem kann eine Variation durch Kronenraumprozesse eine Rolle spielen (Streu-Untersuchungen wurden nicht durchgeführt).

Vergleichswerte für PAK-Depositionen nach DIN 19739 liegen vergleichsweise wenige vor. An Intensiv-Messstellen Baden-Württembergs werden entsprechende Messungen seit 2002, an Ergänzungsmessstellen seit 2004 durchgeführt. Für die Ableitung gebietsbezogener Hintergrundwerte ist dies noch zu früh, wenngleich die bisher vorliegenden Daten durchaus schon plausible räumliche Verteilungen erkennen lassen (vergl. U811-MDBW11-J04-de).

Die PAK-Depositionen Baden-Württembergs des Jahres 2004 sind zum Vergleich in Tabelle 811.5

Abbildung 811.2: PAK 12-Depositionen FFM jahreszeitlich (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen), Termine = Probennahmedaten

Tabelle 811.4: PAK-Depositionen im Zeitraum 24.3.04 bis 23.3.05 (2004*) an der Intensiv-Messstelle FFM (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen)

	Messort F	lächentyp	ns	np	npf	Min	Max	MW	S
Naphthalin g/(ha a)									
	FFM A	Freiland	2	8*	0	0.11	0.15	0.130	0.028
	FFM B	Bestand	2	8*	0	0.11	0.18	0.145	0.049
	FFM C	Bestand	2	8*	0	0.09	0.14	0.115	0.035
Acenaphthylen g/(ha a)	_								
1 , 5, (,	FFM A	Freiland	2	8*	0	0.03	0.03	0.030	0.000
	FFM B	Bestand	2	8*	0	0.02	0.02	0.020	0.000
	FFM C	Bestand	2	8*	0	0.02	0.03	0.025	0.007
Acenaphthen g/(ha a)									
, (FFM A	Freiland	2	8*	0	0.02	0.03	0.025	0.007
	FFM_B	Bestand	2	8*	0	0.02	0.03	0.025	0.007
	FFM_C	Bestand	2	8*	0	0.02	0.02	0.020	0.000
Fluoren a/(ba a)	IIII_C	Destand	2	U	0	0.02	0.02	0.020	0.000
		Freiland	2	Q*	0	0.05	0.08	0.065	0.021
		Rostand	2	0*	0	0.05	0.03	0.005	0.021
		Bestand	2	0	0	0.06	0.07	0.065	0.007
	FFM_C	Bestand	2	δ*	U	0.04	0.04	0.040	0.000
Phenanthren g/(na a)		En alta a d	2	0*	0	0.00	0.50	0 425	0 1 2 4
	FFM_A	Freiland	2	8*	0	0.33	0.52	0.425	0.134
	FFM_B	Bestand	2	8*	0	0.24	0.45	0.345	0.148
	FFM_C	Bestand	2	8*	0	0.27	0.28	0.275	0.007
Anthracen g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.02	0.02	0.020	0.000
	FFM_B	Bestand	2	8*	0	0.36	0.45	0.405	0.064
	FFM_C	Bestand	2	8*	0	0.1	0.79	0.445	0.488
Fluoranthen g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.25	0.26	0.255	0.007
	FFM_B	Bestand	2	8*	0	0.23	0.24	0.235	0.007
	FFM_C	Bestand	2	8*	0	0.21	0.26	0.235	0.035
Pyren g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.18	0.22	0.200	0.028
	FFM_B	Bestand	2	8*	0	0.15	0.15	0.150	0.000
	FFM_C	Bestand	2	8*	0	0.14	0.17	0.155	0.021
Benzo(a)anthracen g/(ha a)									
	FFM A	Freiland	2	8*	0	0.07	0.08	0.075	0.007
	FFM B	Bestand	2	8*	0	0.07	0.07	0.070	0.000
	FFM_C	Bestand	2	8*	0	0.07	0.08	0.075	0.007
Chrysen g/(ha a)	0	Destand	_	Ū	Ŭ	0107	0.00	01070	0.007
	FFM A	Freiland	2	8*	0	0.15	0 19	0 170	0 028
	FFM B	Bestand	2	8*	0	0.14	0.17	0.155	0.021
	FFM_C	Bestand	2	8*	0	0.14	0.17	0.155	0.021
Bonzo(h)fluoranthon $a/(ha a)$	IIII_C	Destand	2	0	0	0.15	0.10	0.105	0.021
Belizo(b)ildoralitien g/(lia a)		Freiland	2	0*	0	0.14	0.19	0 160	0 0 2 0
		Preliand	2	0*	0	0.14	0.18	0.100	0.020
		Bestand	2	0	0	0.13	0.14	0.135	0.007
	FFM_C	Bestand	2	8*	U	0.13	0.15	0.140	0.014
Benzo(K)fluoranthen g/(ha a)			-	C : !:				0.000	
	FFM_A	Freiland	2	8*	0	0.1	0.11	0.105	0.007
	FFM_B	Bestand	2	8*	0	0.08	0.11	0.095	0.021
	FFM_C	Bestand	2	8*	0	0.08	0.08	0.080	0.000

8*: in diesen Jahressummen sind rechnerisch pro Sammler ca. 4,5 Intervalle (also Proben) enthalten.

ns: Anzahl Parallelsammler

np: Anzahl Einzelanalysen pro Jahressumme

npf: fehlende bzw. ergänzte Einzelproben pro Jahressummenwert

Tabelle 811.4: PAK-Depositionen 2004* (Zeitraum 24.3.04 bis bis 23.3.05) an der Intensiv-Messstelle FFM (FFM-A = Freifläche nahe Startbahn, FFM-B und FFM-C Bestandsflächen)

	Messort F	lächentyp	ns	np	npf	Min	Max	MW	S
Benzo(a)pyren g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.08	0.1	0.090	0.014
	FFM_B	Bestand	2	8*	0	0.08	0.09	0.085	0.007
	FFM_C	Bestand	2	8*	0	0.08	0.08	0.080	0.000
Indeno(1,2,3-c,d)pyren g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.11	0.11	0.110	0.000
	FFM_B	Bestand	2	8*	0	0.08	0.11	0.095	0.021
	FFM_C	Bestand	2	8*	0	0.08	0.08	0.080	0.000
Dibenz(a,h)anthracen g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.02	0.02	0.020	0.000
	FFM_B	Bestand	2	8*	0	0.03	0.04	0.035	0.007
	FFM_C	Bestand	2	8*	0	0.01	0.04	0.025	0.021
Benzo(g,h,i)perylen g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.13	0.13	0.130	0.000
	FFM_B	Bestand	2	8*	0	0.1	0.13	0.115	0.021
	FFM_C	Bestand	2	8*	0	0.1	0.1	0.100	0.000
PAK 16 g/(ha a)									
	FFM_A	Freiland	2	8*	0	1.91	2.11	2.010	0.141
	FFM_B	Bestand	2	8*	0	1.93	2.43	2.180	0.354
	FFM_C	Bestand	2	8*	0	1.75	2.38	2.065	0.445
PAK 12 g/(ha a)									
	FFM_A	Freiland	2	8*	0	1.7	1.82	1.760	0.085
	FFM_B	Bestand	2	8*	0	1.7	2.14	1.920	0.311
	FFM_C	Bestand	2	8*	0	1.56	2.17	1.865	0.431
PAK 8 g/(ha a)									
	FFM_A	Freiland	2	8*	0	0.81	0.9	0.855	0.064
	FFM_B	Bestand	2	8*	0	0.72	0.85	0.785	0.092
	FFM_C	Bestand	2	8*	0	0.74	0.76	0.750	0.014

8*: in diesen Jahressummen sind rechnerisch pro Sammler ca. 4,5 Intervalle (also Proben) enthalten.

ns: Anzahl Parallelsammler

np: Anzahl Einzelanalysen pro Jahressumme

npf: fehlende bzw. ergänzte Einzelproben pro Jahressummenwert

Tabelle 811.5: PAK-Depositionen 2004 an ausgesuchten Standorten Baden-Württembergs sowie an der Intensiv-Messstelle FFM 2004* (Zeitraum 24.3.04 bis bis 23.3.05)

	(g/ha a)	PAK 16	PAK 12	PAK 8	Benzo(a)pyren
Aulendorf	Freifläche	0.86	0.60	0.28	0.03
Baltmannsweiler	Freifläche	2.04	1.64	0.78	0.08
Forst	Bestand	2.33	2.12	1.06	0.11
	Freifläche	2.40	2.12	1.06	0.12
Kälbelescheuer	Freifläche	0.66	0.52	0.31	0.04
Karlsruhe Hertzstr.	Freifläche	2.02	1.68	0.93	0.12
Kehl	Freifläche	3.08	2.38	1.05	0.12
Nagold	Freifläche	1.42	1.09	0.58	0.06
Trochtelfingen	Freifläche	1.06	0.89	0.48	0.03
Wilhelmsfeld	Bestand	1.40	1.23	0.60	0.07
	Freifläche	2.17	1.97	1.04	0.08
FFM_A	Freifläche	2.01	1.76	0.86	0.09
MW FFM_B/C	Bestand	2.12	1.89	0.77	0.08

dargestellt.

Zieht man einmal die PAK 12 und PAK 8- Depositionen als die methodisch robusteren (geringer Passivsammeleffekt) zum Vergleich heran, so lässt sich die Intensiv-Messstelle FFM für 2004 am ehesten dem weiteren Umfeld eines Ballungsraums zuordnen, ähnlich wie die Messstellen Wilhelmsfeld (ca. 15-20 km östlich Mannheim/Heidelberg) und Baltmannsweiler (ca. 20 km östlich Stuttgart).

U841 Sickerfrachten

Aus den Konzentrationen und Sickerraten der Tabelle 621.1 ergeben sich die Sickerfrachtenschätzungen der folgenden Tabelle 841.1 (Schätzung deshalb, weil der preferentielle Fluss und ggf. der Partikeltransport wegen der Komplexität gegenwärtig nicht adäquat berücksichtigt werden können).

Der zeitliche Verlauf der 4-wöchentlichen Einzelfrachten zeigt, dass die Höhe einer jeweiligen Fracht im wesentlichen von der Höhe der zugehörigen Sickerrate abhängig ist. Zur Berechnung der Jahressummen 2004* wurde deshalb aus den vorhandenen Einzelfrachten im Verhältnis der Sickerraten auf das Gesamtjahr hochgerechnet.

Zieht man den genannten Zusammenhang in Betracht, so sind die errechneten Frachten als plausibel anzusehen. Nur bei Co fällt mit 21,3 g/ha zwischen KW33 bis KW37 ein hoher Wert auf, der nicht in dieses Schema passt. Transportprozesse in Böden sind jedoch kompliziert, weshalb hier noch längere Zeitreihen für eine Beurteilung abzuwarten sind.

Qualitätsgesicherte Vergleichswerte für Sickerfrachten liegen bislang nicht in ausreichender Zahl vor. Zu groß sind standörtliche Unterschiede und leider auch die methodischen Schwierigkeiten und Herangehensweisen. Fortschritte sind hier erst mittelfristig durch die Arbeit derzeit aktiver Arbeitsgruppen (DIN-AK4, WG86 der Umweltbeobachtungskonferenz etc.) zu erwarten.

Eine Grobplausibilisierung der Sickerfrachtenschätzungen allgemein kann anhand der NaCl-Frachten erfolgen, da das NaCl als natürlichem Tracer einem konservativen Tracer am nächsten kommt.

Für Na wurden für 2004* an der Messfläche FFM_C (entspricht etwa der Lage des Sickerwassermessfeldes) eine atmosphärische Deposition von 4,4 kg/ha a ermittelt. Im Boden 6, 12, 18 und 11 g/ha a in den Bodentiefen 0 cm, 10 cm, 30 cm und 60 cm. Zumindest für die Tiefe 0 cm ist hier eine gute Übereinstimmung gegeben. In den tieferen Horizonten kommen zwei Möglichkeiten in Betracht:

1. könnte älteres Na noch eine Rolle spielen; so lagen die Einträge 1992/93 beispielsweise bei 11,3 g/ha a.

2. es liegt eine Überschätzung der wahren Frachten vor.

Eine Entscheidung kann nur aufgrund längerer Zeitreihen erfolgen.

Bei Cl wurden 9,2 g/ha a in der Deposition 2004* ermittelt. Die entsprechenden Sickerfrachten 2004: 15, 19, 23 und 16 g/ha a in 0 cm, 10 cm, 30 cm und 60 cm Tiefe. Der Cl-Eintrag betrug 1992/93 16,4 g/ha a. Dieser Befund deutet eher auf eine Überschätzung bei den Sickerfrachten hin, da sich Cl kaum über 10 Jahre in den oberen Bodenschichten halten kann. Pflanzenteile enthalten zwar auch Cl, ein zusätzlicher Boden-Input von Cl über die Streu ist aber eher unwahrscheinlich, da das Cl-Frachtenprofil keinen Hinweis auf einen hierzu notwendigen Pflanzenentzug liefert (Cl müsste dann mit der Tiefe abnehmen, wie es bei K, N und all die anderen Nährelementen deutlich zu beobachten ist).

gernals a	0.0.0			<u>9</u>											
KV K	V von W bis	1 5	5 9	9 13	13 17	17 21	21 25	25 29	29 33	33 37	37 41	41 45	45 49	49 53	2004* /(ha a)
MW ml/Sa	ugsonde	4 KW													
	0 cm	-	-	-	22	100	52	132	297	125	500	540	117	148	2641
	10 cm	-	-	-	895	1081	841	670	835	913	894	835	520	335	10163
	30 cm	-	-	-	999	282	42	799	866	1330	0	4	4	10	5637
	60 cm	-	-	-	490	618	491	77	30	138	182	178	0	0	2864
Sickerrate	(mm/4K	(W)													
	0 cm	59	25	18	14	55	18	43	78	80	40	39	25	16	512
	10 cm	58	26	17	13	48	14	33	64	75	35	37	25	16	459
	30 cm	55	26	14	11	33	7	12	35	64	25	32	25	14	353
	60 cm	50	27	13	8	13	4	0	0	29	11	21	23	14	214
Protonen (r	nol/ha 4	KW)													
	0 cm	-	-	-	51	113	28	165	291	168	95	56	37	36	1297
	10 cm	-	-	-	13	39	12	50	122	134	56	43	21	38	675
	30 cm	-	-	-	10	28	5	14	57	106	26	34	26	19	445
	60 cm	-	-	-	8	10	3	0	0	22	18	16	24	15	200
CI (kg/ha 4	KW)														
(5,	0 cm	-	-	-	1.2	5.1	0.5	1.3	1.4	0.3	0.8	0.4	0.3	0.5	15
	10 cm	-	-	-	0.9	2.7	1.0	2.3	3.1	2.1	0.4	1.2	0.4	0.4	19
	30 cm	-	-	-	0.9	3.2	0.6	1.0	2.2	3.6	1.4	1.8	1.4	0.6	23
	60 cm	-	-	-	0.7	1.3	0.3	0.0	0.0	2.1	0.7	1.2	1.8	1.1	16
NO ₂ -N (ka/	ha 4KW))													
-3 (5)	0 cm	· _	-	-	3.7	10.5	2.4	9.8	13.9	3.8	1.6	0.3	0.6	1.4	60
	10 cm	-	-	-	1.5	4.1	2.6	11.0	22.7	14.9	2.0	4.6	2.5	2.0	87
	30 cm	-	-	-	0.9	3.6	0.9	1.5	6.4	12.9	3.1	4.1	3.1	1.3	52
	60 cm	-	-	-	0.5	0.9	0.3	0.0	0.0	0.7	1.2	0.5	3.1	1.9	16
SO (kg/ha	4KW)				0.0	0.15	0.0	0.0	0.0	017		0.0	0.1	1.0	
	0 cm	_	-	-	1.9	5.5	1.3	3.4	6.6	2.7	2.0	1.2	1.0	1.3	34
	10 cm	_	-	-	1.0	3.9	1.2	2.5	4.9	7.9	2.8	4.5	2.2	1.7	42
	30 cm	_	-	-	1.6	4.7	0.9	1.4	3.4	5.9	2.6	3.3	2.6	1.3	38
	60 cm	-	-	-	17	3 1	0.9	0.0	0.0	6.7	2.4	5 1	4.6	2.8	47
Ca (kg/ha 4	4KW)					0.1	0.5	0.0	0.0	017		0.1		2.0	
ou (ng) nu	0 cm	-	-	-	2.7	7.3	1.2	6.8	9.6	6.4	2.3	1.5	1.5	1.6	51
	10 cm	-	-	-	0.9	24	1 1	54	11.6	8.0	27	2.4	17	1 1	48
	30 cm	-	-	-	0.4	17	0.4	0.8	3.0	5.6	15	1 9	15	0.7	24
	60 cm	_	-	-	0.1	0.6	0.7	0.0	0.0	0.7	0.4	0.7	13	0.8	9
Ma (ka/ha	4KW)				0.4	0.0	0.2	0.0	0.0	0.7	0.4	0.7	1.5	0.0	,
119 (119/114	0 cm	-	-	-	0.6	15	03	15	17	1 1	04	03	03	03	10
	10 cm	_	-	_	0.0	0.6	0.3	1.3	2.7	1.1	0.6	0.7	0.5	0.3	12
	30 cm	_	-	_	0.2	0.6	0.5	0.2	1.0	1.0	0.5	0.5	0.5	0.5	8
	60 cm	_	_	_	0.2	0.0	0.1	0.2	0.0	0.3	0.5	0.0	0.5	0.2	3
Na (ka/ba /					0.1	0.2	0.1	0.0	0.0	0.5	0.2	0.5	0.5	0.5	J
Na (kg/na -	0 cm	_	_	_	05	1 1	0.2	0.6	0 9	04	03	03	0.2	0.2	6
	10 cm	_	_	_	0.5	1 1	0.5	1 5	24	17	0.5	0.5	0.2	0.2	12
	10 cm		_		0.4	1.1	0.5	1.5	2.4	2.5	1.0	1.2	1.0	0.5	12
	50 cm	-	-	-	0.5	1.0	0.4	0.7	2.2	1.2	0.7	1.5	1.0	0.5	10
K (ka/ba 4)		-	-	-	0.4	0.0	0.2	0.0	0.0	1.5	0.7	1.2	1.5	0.8	11
ix (kg/11a 4r	0.cm	_		_	2.2	87	13	4.8	63	14	1 2	0.5	0.2	05	34
	10 cm				2.2	1.9	1.5	3.0	7 1	6.5	1.2	25	1.2	1.0	34
	30 cm				0.0	1.0	0.1	0.9	1.0	1.5	0.5	2.5	0.5	1.0	0
	60 cm				0.1	0.0	0.1	0.2	1.0	0.4	0.5	0.0	0.5	0.5	0
				_	0.1	0.2	0.1	0.0	0.0	0.4	0.2	0.2	0.5	0.2	5

Tabelle 841.1: Sickerfrachten der Einzelintervalle 2004 (Zeitraum 24.3.04 bis bis 29.12.04) und gemäß der Sickerraten hochgerechnete Jahresfrachten 2004* an der Intensiv-Messstelle FFM

KW von	1	5	9	13	17	21	25	29	33	37	41	45	49	2004*
KW DIS	5	9	13	17	21	25	29	33	37	41	45	49	55	/(na a)
Pb (g/ha 4KW)														. = -
0 cm	-	-	-	5.4	13.0	3.7	14.2	24.4	26.8	12.1	13.8	9.0	4.9	159
10 cm	-	-	-	1.2	4.6	1.5	3.8	6.0	5.5	3.0	1./	0.8	1.1	37
30 cm	-	-	-	0.2	1.3	0.5	0.3	2.9	2.4	1.4	1.8	1.4	1.5	19
60 cm	-	-	-	0.2	0.2	0.2	0.0	0.0	0.4	0.6	0.3	1.4	0.8	/
				0.4	1.0	0.1	0.0	1 2	0.0	0.2	0.2	0.2	0.2	6.5
0 cm	-	-	-	0.4	1.0	0.1	0.8	1.2	0.8	0.3	0.2	0.2	0.2	0.5
10 cm	-	-	-	0.1	0.2	0.2	0.9	1.9	1.4	0.3	0.5	0.3	0.2	7.6
30 cm	-	-	-	0.1	0.4	0.5	0.2	1.0	1.8	0.0	0.8	0.6	0.2	ö.5 2 2
	-	-	-	0.1	0.2	0.1	0.0	0.0	0.2	0.2	0.2	0.5	0.3	3.2
				26	7 2	1 7	0.7	10.0	7 5	4.2	2.6	2.4	1 0	64
10 cm	-	-	-	3.0	7.2	1.7	12.0	10.0	20.4	4.Z	5.0 6 1	2.4 4 0	1.0	116
10 cm	-	-	-	1.0	5.4 6 0	2.0	13.0	20.0	10.9	0.5 E 2	6.0	4.2	2.4	110
50 cm	_	-		1.0	0.2	1.5	2.7	10.1	19.0	2.2	0.9 3 4	5.5	2.7	05 //1
As (a/ba 4KW)	-	-	-	1.7	2.7	0.8	0.0	0.0	5.4	2.5	5.4	0.0	5.7	41
	_	_	_	0.4	1 2	03	1 2	25	2.2	1 1	0.0	05	0.2	13
10 cm	_			0.4	1.2	0.5	1.2	2.5	1 0	0.6	0.9	0.5	0.2	13
30 cm	_	_	_	0.7	3.2	0.0	0.1	0.4	0.5	0.0	0.7	0.4	0.7	15
60 cm	_	_	_	0.1	0.3	0.0	0.1	0.4	0.5	0.5	0.0	0.4	0.2	4
Cr (g/ba 4KW)				0.4	0.5	0.1	0.0	0.0	0.1	0.2	0.1	0.5	0.5	T
	_	_	-	04	1 1	0.2	07	16	25	1 0	15	0.8	03	13
10 cm	-	_	_	0.4	1 3	0.2	1.0	2.0	2.5	1.0	1.5	0.8	0.5	15
30 cm	_	_	-	0.1	0.4	0.4	0.0	0.2	0.3	0.1	0.2	0.0	0.5	2
60 cm	-	_	-	0.0	0.1	0.0	0.0	0.2	0.5	0.1	0.2	0.1	0.1	1
Cu (g/ha 4KW)				0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.1	0.1	-
0 cm	-	_	_	7.7	26.6	3.7	13.0	28.5	40.3	13.8	15.1	9.8	4.0	203
10 cm	-	_	-	1.6	5.0	1.9	7.5	16.6	16.8	6.9	5.9	5.0	2.2	89
30 cm	-	_	_	0.2	1.1	0.2	0.4	1.2	2.7	0.7	0.9	0.7	0.4	11
60 cm	-	-	-	0.2	0.3	0.1	0.0	0.0	0.6	0.3	0.5	0.7	0.4	5
Co (g/ha 4KW)														
0 cm	-	-	-	1.0	2.2	0.5	2.1	3.3	1.5	0.9	0.7	0.5	0.5	16
10 cm	-	-	-	0.6	2.0	0.9	5.2	11.5	8.9	2.5	2.9	2.0	1.3	48
30 cm	-	-	-	1.6	6.0	0.5	2.9	9.4	21.3	4.0	5.3	4.0	1.8	78
60 cm	-	-	-	1.9	2.5	0.9	0.0	0.0	7.0	3.6	6.1	5.5	3.3	53
Zn (g/ha 4KW)														
0 cm	-	-	-	39	94	16	84	132	83	32	24	22	21	685
10 cm	-	-	-	13	33	17	86	182	138	34	47	25	21	763
30 cm	-	-	-	11	37	8	15	63	121	33	42	32	19	522
60 cm	-	-	-	6	10	3	0	0	11	9	11	29	18	167
Al (g/ha 4KW)														
0 cm	-	-	-	384	780	182	717	1250	1162	641	751	490	286	8308
10 cm	-	-	-	479	1261	591	3164	6509	4421	1128	1663	953	910	26967
30 cm	-	-	-	336	1188	295	501	1929	3761	968	1258	960	414	15927
60 cm	-	-	-	232	388	121	0	0	382	306	344	1366	831	6874
Mn (g/ha 4KW)														
0 cm	-	-	-	874	2850	429	2770	3492	2756	742	508	597	684	19633
10 cm	-	-	-	224	607	313	1530	3152	2363	579	755	409	341	13142
30 cm	-	-	-	236	758	167	358	1110	2128	555	721	551	216	9331
60 cm	-	-	-	227	375	110	0	0	395	248	379	866	527	5415

Tabelle 841.1 (Forts.): Sickerfrachten der Einzelintervalle 2004 (Zeitraum 24.3.04 bis bis 29.12.04) und gemäß der Sickerraten hochgerechnete Jahresfrachten 2004* an der Intensiv-Messstelle FFM

unu ge		Sicker	Tutte	11100	ingere	cinicic	Junic	Sinucin	.cn 200	un un	uci m	censiv	110555	tene i	
	KW von	1	5	9	13	17	21	25	29	33	37	41	45	49	2004*
	KW bis	5	9	13	17	21	25	29	33	37	41	45	49	53	/(ha a)
Fe (g/ha	1 4KW)														
	0 cm	-	-	-	88	256	53	178	392	615	321	397	256	104	3326
	10 cm	-	-	-	30	154	27	52	99	184	154	88	43	23	1092
	30 cm	-	-	-	2	189	1	2	12	14	19	25	19	5	397
	60 cm	-	-	-	1	2	1	0	0	8	3	6	5	3	52
Sb (g/ha	a 4KW)														
	0 cm	-	-	-	0.035	0.125	0.051	0.153	0.360	0.505	0.389	0.420	0.191	0.072	2.88
	10 cm	-	-	-	0.014	0.040	0.017	0.061	0.185	0.216	0.145	0.112	0.065	0.051	1.16
	30 cm	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.71
	60 cm	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.43

Tabelle 841.1 (Forts.): Sickerfrachten der Einzelintervalle 2004 (Zeitraum 24.3.04 bis bis 29.12.04) und gemäß der Sickerraten hochgerechnete Jahresfrachten 2004* an der Intensiv-Messstelle FFM

Insgesamt kann die Plausibilität der geschätzten Sickerfrachten noch nicht abschließend beurteilt werden. Nach der NaCl-Methode zeichnet sich eine Überschätzung der Frachten um ca. das Doppelte ab. Qualitätsstandards sind auf diesem Gebiet kaum vorhanden, im Vergleich jedoch zu Ergebnissen aus anderen Untersuchungen, ist diese Schätzung recht gut.

Die so für die Schwermetalle und Arsen erhaltenen Schätzungen sind diesen Überlegungen zufolge im Sinne der Vorsorge als konservative Schätzungen anzusehen. Eine weitergehende Bewertung kann nur im Rahmen der Stoffbilanzen durchgeführt werden, da weder Prüfwerte für Sickerfrachten noch ausreichend Vergleichswerte zur Verfügung stehen.

Als Mittelwerte der Jahre 1992 und 1993 schätzte Schneider (1995) die Sickerfrachten der Tabelle 841.2 zwar für den gleichen Bestand jedoch an einem abweichenden Messplot (Keramiksaugkerze und klimatologische Wasserbilanz). Diese Schätzungen liegen bei ähnlichen Werten wie die für 2004 und zeigen damit angesichts der zeitlichen und räumlichen Unterschiede eine gute Übereinstimmung. Deutliche Abweichungen zeigen sich nur bei NO₃-N ab 10 cm Tiefe, die hier aber nicht weiter kommentiert werden sollen.

Tabelle 841.2: Einfache Schätzungen der Sickerfrachten (Keramiksaugkerzen und klimatologische Wasserbilanz) an der Intensiv-Messstelle FFM (von FFM_C abweichender Messplot aber gleicher Bestand), JAhresmittelwerte für den Zeitraum 1992/93 (aus Schneider 1995).

Tiefe Zeitraum	Cl	S04	NO3-N	NH4-N	Ca	Mg	Na	К	HCO3-	Al	Fe	Mn
/(ha a)	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/	kg/
0 cm 1992/93	10.8	92.0	35.1	13.0	34.0	5.6	8.8	26.5	-	6.4	6.2	12.9
20 cm 1992/93	33.3	97.8	5.7	52.2	30.3	4.6	14.5	16.2	185.8	2.6	0.1	10.4
50 cm 1992/93	32.6	70.6	4.1	21.0	11.4	3.0	10.6	10.2	64.6	3.2	0.1	5.8
80 cm 1992/93	42.6	68.5	3.8	18.1	9.8	3.1	9.7	12.2	24.0	2.6	0.1	8.7
120 cm 1992/93	27.3	69.6	1.5	17.5	12.9	3.7	7.8	8.0	64.1	0.8	0.0	10.7

U891 Zusammenschau der Frachten

Eine Zusammenschau der ermittelten Jahresfrachten ist in Tabelle 891.1 und Tabelle 891.2 gegeben.

Recht stimmig erscheinen die relativen Frachten-Verhältnisse.

So findet in der organischen Auflage (bis 0 cm) aber auch

teilweise noch im Ah-Horizont (bis 10 cm Tiefe) zusätzlich zum Eintrag über die Deposition eine Mobilisierung (Output>Input) statt, mit anschließender Festlegung (vornehmlich SM und Arsen) bzw. Pflanzenaufnahme (Nährelemente) in den tieferen Bodenschichten.

Ausnahmen sind Cl, Na aber auch SO_4 , die den Bodenkörper einfach nur durchlaufen, wobei sich auch bei SO_4 der Überschätzungsfaktor von ca. 2 bei den Sickerfrachten abzuzeichnen scheint.

Wie die Protonenfrachten verdeutlichen, handelt es sich hierbei um einen nicht ausschließlich pH-gesteuerten Prozess. Co und Cd erfahren noch selbst bis in 30 cm Bodentiefe eine Mobilisierung.

Zum Schließen von Bilanzlücken sollten künftig Untersuchungen der Streu durchgeführt werden und NH_4 im Sickerwasser sowie Sb in der Deposition gemessen werden. Die Bestimmung von PAK im Sickerwasser ist noch Gegenstand der Forschung.

	NS/SR	Prot.	CI	NO ₃ -N	NH_4 -N	SO4	Ca	Mg	Na	К	AI	Fe	Mn
	(mm/a)	(mol/ha a)					(kg	/ha a)					
Depo-Freiland	663	237	4.9	4.7	4.6	16.9	3.3	0.4	2.2	2.0	1.7	1.9	0.2
Depo-Bestand	626	142	8.2	6.8	5.1	19.9	5.6	1.2	3.6	11.9	1.3	2.1	4.4
Streufracht	-	-	-	-	-	-	-	-	-	-	-	-	-
0 cm	512	1297	15	60	-	34	51	10	6	34	8.3	3.3	19.6
10 cm	459	675	19	87	-	42	48	12	12	35	27.0	1.1	13.1
30 cm	353	445	23	52	-	38	24	8	18	8	15.9	0.4	9.3
60 cm	214	200	16	16	-	47	9	3	11	3	6.9	0.1	5.4

Tabelle 891.1: Zusammenschau der ermittelten Jahresfrachten an der Intensiv-Messstelle FFM für die Massenelemente (Einheit kg/(ha a)). Bezugszeiträume teilweise verschieden.

Tabelle 891.2: Zusammenschau der ermittelten Jahresfrachten an der Intensiv-Messstelle FFM für die Spurenelemente (Einheit g/(ha a)). Bezugszeiträume teilweise verschieden.

	As	Cd	Со	Cr	Cu	Ni	Pb	Sb	v	Zn	PAK 16	PAK 12	PAK 8	Benzo(a)p.
								(g/ha	a)					
Depo-Freiland	1.7	1.0	6.5	10.7	182	16.0	12.5	-	8.3	290	2.01	1.76	0.86	0.09
Depo-Bestand	2.2	1.1	2.3	14.2	124	17.2	12.1	-	9.8	283	2.12	1.89	0.77	0.08
Streufracht	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0 cm	13	6.5	16	13	203	64	159	2.88	-	685	-	-	-	-
10 cm	13	7.6	48	15	89	116	37	1.16	-	763	-	-	-	-
30 cm	8	8.5	78	2	11	85	19	<0.71	-	522	-	-	-	-
60 cm	4	3.2	53	1	5	41	7	< 0.43	-	167	-	-	-	-

Bezugszeiträume für Jahresfrachten FFM 2004*

Messungen	von	bis
PE2-Sammler	14.07.04	13.07.05
Bergerhoff	24.03.04	23.03.05
PAK-Sammler	24.03.04	23.03.05
Sickerfrachten	01.01.04	29.12.04

U9 Bilanzen

U914 Stoffbilanzen FFM

Stoffbilanzen (Landschaftsumweltbilanzen) setzen die Stoffströme eines Landschaftsausschnitts in Bezug zu den jeweils vorhandenen Stoffpools. Insbesondere Umweltprognosen lassen sich erst auf diesem hohen Aggregationsniveau sinnvoll erstellen.

Für FFM müssten hierzu längerfristig noch die Streufracht und Pflanzenaufnahme, sowie die Stoffpools in Boden und Pflanzenbestand mit einbezogen werden.

U941 Wasserhaushaltsbilanz FFM

Die Wasserhaushaltsbilanz 2004 wurde mit dem Simulationsprogramm WHNSIM (Huwe 1992) berechnet. Hierzu waren sehr umfangreiche Parametrisierungen von bodenphysikalischen und Pflanzenkennwerten sowie Anpassungen vorhandener Messdaten durchzuführen. Die Ergebnisse, insbesondere auch der Modellkalibrierung, sind aufgrund ihres Umfangs in einem gesonderten Papier dokumentiert (U941-MHE01-J04-de).

Die für diesen Bericht notwendigen Endergebnisse der Modellierung 2004 stellen die für die Probennahmeintervalle errechneten Sickerraten dar. Diese sind hier als entsprechende Summenwerte auszugsweise schon in den Tabellen 612.1, 621.1 sowie 841.1 dokumentiert.

Literatur:

Schneider (1995): Konzeptionelle Arbeiten zur Errichtung einer Boden-Dauerbeobachtungsfläche am Beispiel einer Versuchsfläche im Waldgebiet der Gemeinde Rüsselsheim. Diplomarbeit Inst. f. Geowiss. Uni Mainz, 1995.

UMEG 2004: Atmosphärische Deposition 2004. Intensiv-Messstellen Baden-Württemberg. http://www.umweltbeobachtung.org/journal/U811-MDBW11-J04de.pdf (in Vorbereitung).

WG85 Deposition Fluxes (2004): Hintergrundwerte für Atmosphärische Depositionen. Stand 03/2004. http://www.umweltbeobachtung.org/journal/U1361-B01-de.pdf.

Ihle Peter (Hrsg.) (2001): Atmosphärische Deposition in der Bundesrepublik Deutschland. Schriftenreihe des Instituts für Energetik und Umwelt, Leipzig. Teubner Verlag 2001.

Huwe (1992): WHNSIM. Ein Modell zur Simulation des Wasser-, Wärme- und Stickstoffhaushalts von Standorten mit unterschiedlicher Nutzung. Version 2.0. August 1992.

Impressum

:: Editor: HLUG & EU-EMS council, chairs see www.eu-ems.org/ council | Titel: Umweltbeobachtung. Ergebnisse IMS Frankfurt Flughafen | Auftraggeber: HLUG, Verfasser: UMEG, Projektpartner: Fraport | Copyright © all rights reserved by HLUG & EU-EMS | eISSN 1611-1451 Europ. Env. eJournal (Umweltbeobachtung)

Datenanhang

Tabelle A-613.1: Im Untersuchungszeitraum 24.3.04 bis 23.3.05 pro Saugplatte (0 cm) bzw. Saugkerze gewonnene Sickerwassermenge sowie jeweils anliegende Saugdrücke an der Intensiv-Messstelle FFM

24/0cm	20/0cm	16/0cm	12/0cm	8/0cm	4/0cm	Saugdruck 0 cm		Probennahme
21/10cm	17/10cm	13/10cm	9/10cm	5/10cm	1/10cm	Saugdruck 10 cm		
22/30cm	18/30cm	14/30cm	10/30cm	6/30cm	2/30cm	Saugdruck 30 cm		
23/60cm	19/60cm	15/60cm	11/60cm	7/60cm	3/60cm	Saugdruck 60 cm		
(ml)	(ml)	(ml)	(ml)	(ml)	(ml)	(hPa)	(hPa)	
10	0	0	10	10	100	250	200	21.04.04
>1199	>1199	200	>1199	700	870	300	250	
>1199	0	>1199	>1199	>1199	>1199	200	150	
>1199	200	>1199	10	30	300	250	200	
170	0	0	10	340	80	250	200	19.05.04
>1199	>1199	1100	1199	1100	690	250	200	
720	70	0	0	0	900	150	100	
1000	>1199	>1199	0	70	240	250	200	
0	10	20	10	150	120	250	200	16.06.04
>1199	>1199	>1199	1050	300	100	200	150	
250	_*	0	0	0	0	150	100	
0	300	>1199	250	0	>1199	200	150	
0	0	10	10	110	660	250	200	14.07.04
790	>1199	>1199	720	110	0	150	100	
>1199	_*	>1199	>1199	>1199	0	200	150	
10	350	90	10	0	0	200	150	
550	110	10	60	450	600	250	200	11.08.04
1100	1199	>1199	>1199	210	100	150	100	
>1199	0	>1199	>1100	>1199	500	200	150	
100	10	5	5	0	60	200	150	
300 1150 3099** 5	0 >1199 _*	0 1150 1150 0	0 >1199 1100 0	0 680 1150 0	450 100 150 820	210 150 200 200	180 100 150 150	08.09.04
0	630	650	240	880	600	180	160	06.10.04
>1199	>1199	>1199	>1199	490	80	150	100	
0	_*	0	0	0	0	200	150	
10	70	10	0	0	1000	200	150	
0	500	740	210	990	800	180	160	03.11.04
>1199	>1199	>1100	>1199	230	80	120	80	
0	_*	0	10	10	0	200	150	
0	10	0	10	0	1050	200	150	
30 350 0 0	130 >1199 _*	100 370 0 0	110 >1199 0 0	220 0 10 0	110 0 10 0	180 100 220 200	130 60 170 150	01.12.04
20	140	200	80	150	300	180	130	29.12.04
10	800	180	750	0	270	100	60	
0	_*	0	0	30	20	250	170	
0	0	0	0	0	0	220	150	
90	300	490	110	300	500	180	130	26.01.05
0	220	600	670	10	>1199	100	60	
0	_*	0	10	70	0	300	220	
20	70	10	10	0	0	270	200	
200	270	590	100	280	520	180	130	24.02.05
100	110	190	550	90	960	100	60	
10	_*	0	0	680	10	350	300	
570	>1199	1100	750	0	90	330	250	
100 0 10 190	180 0 _* >1199	10 0 1100	90 320 0 1050	190 0 290 10	190 300 20 250	180 100 350 300	130 60 300 250	23.03.05

-* : Saugkerze 18/30 cm abgeklemmt, da gebrochen.

1199: maximales Fassungsvermögen der Saugflaschen

** : in manchen Fällen lässt sich das Gesamtvolumen bei Überlauf anhand der Wasserfallen rekonstruieren