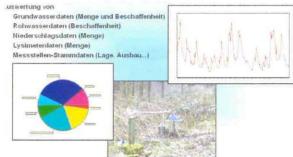
# Die Grund- und Rohwasserdatenbank Hessen (GruWaH) Grundlage für Einzelfallrecherchen und für das Umsetzen der EU-Wasserrahmenrichtlinie

Georg Berthold, Harald Rückert, Benedikt Toussaint, Cornelia-Löns-Hanna & Dirk Bastian

### 1. Inhalte der GruWaH:

Im Dezernat W 3 des Hessischen Landesamtes für Umwelt und Geologie (HLUG) werden u.a. Grundwasserdaten erfasst, ausgewertet und (allgemein für den Ressortbereich) bewertet. Es handelt sich um quantitative und qualitative Messwerte (Grundwasserstand bzw. Quellschüttung, Grundwasserbeschaffenheit) und Stammdaten (u.a. Lagekoordinaten, Messpunkthöhe, Messstellenausbau, geologische/hydrogeologische Verhältnisse, Mess- bzw. Beprobungsturnus, Untersuchungsprogramm, analytische Nachweisverfahren) der relevanten Messstellen des hessischen Landes Grundwasser Dienstes (LGD).


Das LGD-Messnetz umfasst z.Z. ca. 900 Messstellen i.e.S. und 80 Quellschüttungsmessstellen. Außerdem werden die Daten von ca. 500 Messstellen von Sondermessnetzen (Deponieüberwachung, Salzversenkung u. a.), in der GruWaH gehalten. Zusätzlich fallen die chemischen Analysendaten des zu etwa 95 % aus Grundwasserleitern entstammenden Rohwassers der öffentlichen Trinkwasserversorgungsunternehmen (sehr untergeordnet auch von gewerblichen Unternehmen und Privaten) an, die gem. Vorgaben der Rohwasseruntersuchungsverordnung (RUV) vom 19.05.1991 zu erheben und über die zuständigen Unteren Wasserbehörden dem HLUG zur zentralen Speicherung, Pflege und Auswertung zu übersenden sind. Es handelt sich dabei um ca. 4500 RUV-Messstellen (Förderbrunnen, Quellfassungen u.a.) von rund 500 Wasserversorgungsunternehmen.

Alle grundwasserrelevanten Daten (Stammdaten und Messwerte) werden in der zentralen Grundund Rohwasserdatenbank Hessen (GruWaH) im HLUG gespeichert, fortgeschrieben, gepflegt und auf Plausibilität geprüft. Das Datenbankmodell ist so konzipiert, dass auch nicht grundwasserrelevante Daten in die Datenbankstruktur einbezogen werden könnten und somit eine übergreifende Datenauswertung zu realisieren wäre.

Um den hohen DV-technischen, fachlichen, administrativen und organisatorischen Anforderungen an die Datenverarbeitung gerecht zu werden, stellt die GruWaH als wichtigster Baustein des Fachinformationssystems Grundwasserschutz-Wasserversorgung (FIS GW) benutzerfreundliche Zugangs-, Prüf-, Pfle-

## Grund- und Rohwasser-Datenbank Hessen



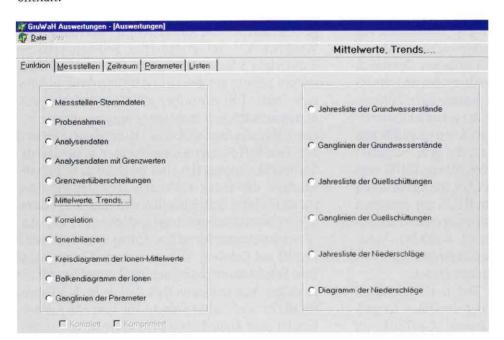


ge-, Recherche- und Auswertungsmöglichkeiten auf Windows-PC's mit graphischer Bedienoberfläche (auf Delphi 5 basierend) bereit. Das GruWaH-Kernsystem besteht aus der GruWaH-Datenbank (relationale Oracle-DB) mit seiner auf die komplexen wasserwirtschaftlichen Problemstellungen ausgerichteten Datenstruktur und den Daten einerseits und den GruWaH-Softwarekomponenten andererseits. Softwarekomponenten sind insbesondere Import-Module, die einen einfachen Datenimport über standardisierte Schnittstellen sicherstellen, Datenpflege/Plausibilitätsprüfungen, Recherchetools (u.a. Browser-Software für ad hoc-Abfragen bzw. direkten Zugriff auf Dateien), Daten-down load sowie Standard-Selektionsmechanismen für Daten-Übernahme in andere Anwendungen (z.B. MS Word, MS Excel). Im HLUG sind darüber hinaus für spezielle Auswertungen eine Anbindung an Geographische Informationssysteme (GIS) wie ArcInfo/ArcView sowie Verschneidungen mit anderen Datensammlungen gege-

Diese Funktionalitäten in Verbindung mit einer fundierten Datengrundlage schaffen gute Voraussetzungen für die anstehende Bearbeitung der WRRL.

Die Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 "zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik", üblicherweise mit EU-WRRL abgekürzt, schafft einen EU-weiten Rahmen für die ganzheitliche Betrach-

tung von Flusseinzugsgebieten. Durch die vielfältigen Wechselbeziehungen zwischen oberirdischen Gewässern und Grundwasser kommt daher der qualitativen und quantitativen Beurteilung eines Grundwasserkörpers eine große Bedeutung zu. Die Mitgliedstaaten sind gehalten, gemäß Anhang V, Randnummer 2.4, den chemischen Zustand des Grundwassers zu überwachen und gemäß Anhang V, Randnummer 2.5, darzustellen. Eine entscheidende Bedeutung kommt den Randnummern 2.4.4 und


2.4.5 zu, in denen die "Ermittlung der Trends bei Schadstoffen" bzw. die "Interpretation und Darstellung des chemischen Zustands des Grundwassers" gefordert werden.

In der WRRL wird für jedes Flusseinzugsgebiet eine erstmalige Beschreibung des Grundwasserkörpers gefordert, die als Grundlage für die weitergehende Beschreibung dient bzw. die als Grundlage für Maßnahmenprogramme und die Aufstellung von Bewirtschaftungsplänen herangezogen wird.

## 2. Anwendungsbeispiele

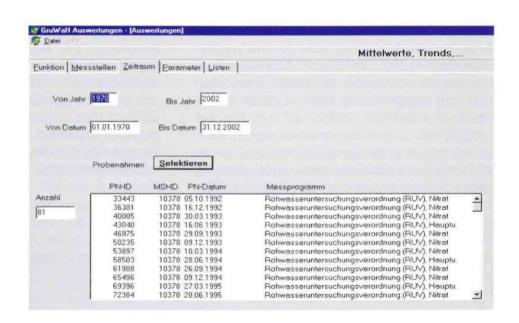
#### 2.1 Auswahloberflächen

Nach Eingabe von Benutzername und individuellem Kennwort erscheint die Eingangsoberfläche (Abb. 1), die eine Vielzahl von Auswertemöglichkeiten enthält. Als Beispiel wurde hier eine Statistikfunktion (Mittelwerte, Trends usw.) ausgewählt.



**Abb. 1:** Eingangsoberfläche GruWaH.

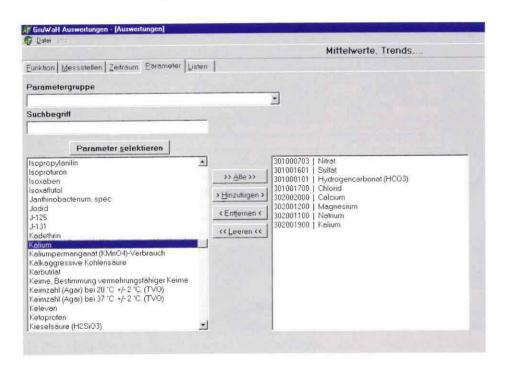
In Anlehnung an die Optik von MS-Produkten können anschließend nach dem Karteikastensystem weitergehende Selektionen vorgenommen werden. Innerhalb der Kartei "Messstellen" sind beliebige Kombinationen zur Eingrenzung der gewünschten Informationen möglich. Hierbei unterstützt das System weitgehend die Anwender durch sinnvolle "Pull-Down-Menüs" (z. B. bei Auswahl eines Kreises werden die dazugehörigen Gemeinden aufgelistet). Ebenfalls ist es möglich, durch die Eingabe von


Rechts-/Hochwert sowie einen frei wählbaren Radius alle Messstellen in diesem Bereich aufzulisten (Abb. 2).

Im nächsten Schritt kann das gewünschte Zeitfenster selektiert werden. Im Kontrollfeld werden die erfassten Untersuchungen

wann?, welches Messprogramm?, wie viele Messungen? angezeigt (Abb. 3).

|                  |                                                              |                     | Mittelwerte           | e, Trends, |
|------------------|--------------------------------------------------------------|---------------------|-----------------------|------------|
| Eunktion Messste | ellen Zeitraum Parameter                                     | <u>L</u> isten      |                       |            |
| MSt-ID           | Kurzname                                                     | Bezeichnung/Suchbeg |                       |            |
| MSt-Art          | ▼ TK25                                                       | Rechtswert          | Hochwert              | Radius [m] |
| IschZweck GW-F   | Rohwasser-Messstelle (RUV                                    | )                   |                       |            |
| Kreis RHE        | NGAU-TAUNUS-KREIS                                            |                     |                       |            |
| Verw.Gem. OES    | TRICH-WINKEL STADT                                           |                     |                       |            |
| iemarkung Oest   | ich                                                          |                     |                       |            |
| Betreiber        |                                                              |                     |                       |            |
| Leiterart        |                                                              |                     |                       |            |
| Formation        |                                                              |                     |                       |            |
| Gestein          |                                                              |                     |                       |            |
| -tydrogeol       |                                                              |                     |                       |            |
| Mes              | sstellen Selektieren                                         | Neue Selektion      |                       |            |
| Anzahl           | 10369 0181005 Tbr. I. Plings                                 | stbachtal > Hinzu > | 1[10378   Tbr   O     | estrich    |
| 5                | 10371 0182015 Schürf, Grau                                   | uer Stein, Presberg | - 103/4   1 pt. II. C | estrich    |
| 10               | 10378 0181001 Tbr. L Oestri<br>10379 0181002 Tbr. II. Oestri |                     |                       |            |
|                  | 10388 0181003 Schurt Pfine                                   |                     |                       |            |


**Abb. 2:** Multifunktionsoberfläche zur freien Selektion von Messstellen.



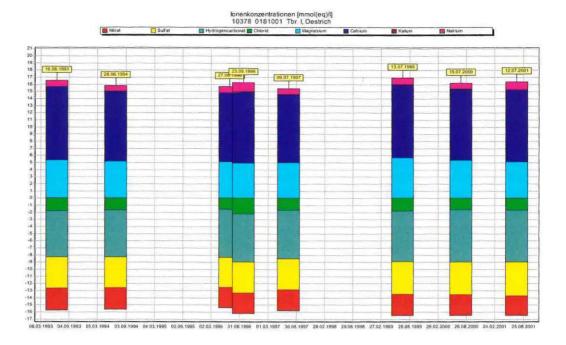
**Abb. 3:** Festlegung des Zeitintervalls.

Ein weiterer Selektionsschritt ist die Auswahl der gewünschten Untersuchungsparameter. Hierbei bietet die Oberfläche die Möglichkeit, bestimmte Parametergruppen (z. B. Pflanzenschutzmittelwirkstoffe, Kationen, Anionen, Feldparameter u. a.) auszuwählen oder aber alle bzw. einzelne Wasserinhaltsstoffe zu markieren (Abb. 4). Die vorgehaltene Parameterliste umfasst derzeit ca. 1600 Einträge. Weiterhin wird im Selektionsfenster neben den Parameternamen auch die Parameter-ID aufgeführt. Diese wird

u. a. als eindeutiger Code bei der digitalen Übertragung von Analysenergebnissen benutzt und hat daher für den Austausch von Daten zwischen unterschiedlichen Datenbanken eine große Bedeutung. Diese Codierung entstammt einer gemeinschaftlichen Arbeit von DVGW, Laboren und HLUG und bildet die Grundlage für einen effektiven Datentransfer.



**Abb. 4:**Oberflächengesteuerte Parameterauswahl.

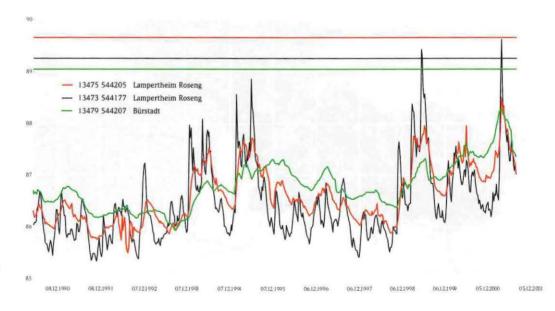

Nach Auswahl der gewünschten Messstellen, Zeiträume, Untersuchungsprogramme und Analyseparameter kann im Dialogfeld "Listen" die entsprechende Abfrage/Berechnung an die Datenbank per Mausklick abgeschickt werden. Wahlweise kann das Ergebnis angezeigt bzw. direkt auf den Drucker geschickt oder als Datei abgespeichert werden. Auch hier wurde sich an den gewohnten Oberflächen von MS-Produkten (speichern unter ...) orientiert, so dass die Speicherung wie auch eine Einbindung/Weiterverarbeitung der Daten mit EXCEL/WORD keinerlei Probleme bereiten.

Wie aus Abb. 5 hervorgeht, werden die wichtigsten Kennzahlen der ausgewählten Parameter übersichtlich dargestellt. Ein Vergleich von Mittelwert und Median gibt sofort Auskunft, ob eine Normalverteilung vorliegt (Mittelwert und Median liegen dicht beieinander) oder eine schiefe Verteilung zugrunde liegt. Besonders hilfreich ist das Feld "Trend pro Jahr", da auf einen Blick die Veränderung der Konzentration des gewünschten Parameters (berechnet auf Grundlage einer linearen Regression) in der angezeigten Einheit erfasst werden kann. Im bezeigten Beispiel nimmt die Nitratbelastung der beiden Brunnen durchschnittlich um 1,3 bzw. 2,2 mg/l Nitrat pro Jahr ab.

Zwecks besserer Visualisierung von Messwerten gibt es auch die Möglichkeit, die Ergebnisse grafisch darzustellen. In Abb. 6 werden die Ionenbilanzen als Balkendiagramm (umgerechnet in mmol(eq)/l) dargestellt.

| MSLID | MSt.Bez.          | Par.Name                | Einheit | Anzahi | Trend pro Jahr | Mittelwert | Varianz | Standardabw. | Min. | Max. | Median |
|-------|-------------------|-------------------------|---------|--------|----------------|------------|---------|--------------|------|------|--------|
| 10378 | Tbr. I, Oestrich  | Sulfat                  | mg/l    | 8      | 2,4            | 213        | 83      | 9            | 200  | 229  | 211    |
| 10378 | Tbr. I, Oestrich  | Kalium                  | mg/l    | 8      | 0,0            |            | 0       | 0            | 1    | 2    | 2      |
| 10378 | Tbr. I, Oestrich  | Hydrogencarbonat (HCO3) | mg/l    | 8      | 6,9            | 422        | 396     | 20           | 395  |      |        |
| 10378 | Tbr. I, Oestrich  | Chlorid                 | mg/l    | 8      | -0,5           |            | 43      |              | 56   |      | 6      |
| 10378 | Tbr. I, Oestrich  | Nitrat                  | mg/l    | 34     | -1,3           |            | 103     |              | 158  |      | 188    |
| 10378 | Tbr. I, Oestrich  | Calcium                 | mg/l    | 8      | 0,3            | 199        | 33      | 6            | 190  |      |        |
| 10378 | Tbr. I, Oestrich  | Natrium                 | mg/l    | 8      | 0,3            | 22         | 17      | 4            | 19   |      | 2      |
| 10378 | Tbr. I, Oestrich  | Magnesium               | mg/l    | 8      | 0,2            | 63         | 8       | 3            | 60   | 69   | 6      |
|       |                   |                         |         |        |                |            |         |              |      |      |        |
| 10379 | Tbr. II, Oestrich | Magnesium               | mg/l    | 14     | -0,4           | 61         | 10      | 3            | 54   | 66   | 6      |
| 10379 | Tbr. II, Oestrich | Kalium                  | mg/l    | 14     | 0,0            |            | 0       | 1            | 1    | 4    |        |
| 10379 | Tbr. II, Oestrich | Natrium                 | mg/l    | 14     | -0,4           |            | 21      | 5            | 18   |      |        |
| 10379 | Tbr. II, Oestrich | Chlorid                 | mg/l    | 14     | -1,4           | 70         | 42      | 6            |      |      | _      |
| 10379 | Tbr. II, Oestrich | Calcium                 | mg/l    | 14     | -0,4           | 197        | 67      | 8            | 181  | 209  |        |
|       |                   | Hydrogencarbonat (HCO3) | mg/l    | 13     | 3,1            | 427        | 189     |              |      |      |        |
| 10379 | Tbr. II, Oestrich | Sulfat                  | mg/l    | 14     | -0,4           | 211        | 295     | 17           | 160  | 228  |        |
|       | Tbr. II, Oestrich |                         | mg/l    | 40     | -2,2           | 165        | 301     | 17           | 124  | 212  | 16     |

**Abb. 5:** Beispieltabelle von statistichen Kennzahlen.




**Abb. 6:** Ionendiagrammdarstellung.

#### 2.2 Darstellung von quantitativen Grundwasserdaten

Vor allem bei extrem niedrigen Grundwasserständen ("Wassernotstand") und außerordentlich hohen Grundwasserständen ("Nasse Keller") wird die Bedeutung des Grundwasserdargebotes auch dem Laien ersichtlich. In der GruWaH werden die entsprechenden Daten (Geländehöhe, Abstich, Messpunkthöhe u. a.) vorgehalten. Die entsprechenden Daten können als Diagramm oder als Tabelle dargestellt werden.

Im Gangliniendiagramm (Abb. 7) sind vor allem die zeitlichen Schwankungen der Grundwasserstände klar zu erkennen. Zudem wird im Textfeld der Grafik der jeweils höchste bzw. niedrigste Messwert einschließlich Datum mit ausgegeben. Die eingetragenen Geländehöhen erleichtern zudem die Abschätzung, ob Vernässungsschäden zu erwarten sind oder ob mit keiner Beeinflussung durch hochstehendes Grundwasser zu rechnen ist.



**Abb. 7:**Gangliniendiagramm der Grundwasserstände

### 2.3 Flächenhafte Auswertungen

Durch die Verknüpfungsmöglichkeiten der GruWaH mit einem geografischen Informationssystem sind neben punktuellen bzw. messstellenbezogenen Auswertungen auch regionale Auswertungen möglich. Als Flächenbegrenzungen können hier Gemeinden, Landkreise, hydrogeologische Einheiten, Flusseinzugsgebiete, Wasserschutzgebiete oder auch Grundwasserkörper als Selektionsmerkmale herangezogen werden. Durch die Verknüpfung von "Punktdaten" (Informationen, die durch den Rechts-/Hochwert eine exakte Lage erhalten) mit "Flächendaten" (Informationen, die innerhalb einer geschlossenen Begrenzungsline liegen -Polygon-) können vielfältige Informationen abgeleitet werden.

Gerade diese flächenhaften Informationen haben eine große Bedeutung für die Bearbeitung der WRRL, bei der zunächst eine allgemeine Beschreibung der Grundwasserkörper erfolgen soll.

In Tab. 1 und 2 wird diese Auswertemethode demonstriert. Auf einen Blick sind die Größe der Grundwasserkörper sowie deren Flächenanteile an Acker,

**Tab. 1**: Flächengrößen der Flusseinzugsgebiete ("Grundwasserkörper") Nidda/Kinzig

| Gesamtgebiete            | Kinzig    | Nidda     |
|--------------------------|-----------|-----------|
| Gesamtfläche             | 105828 ha | 194243 ha |
| Fläche außerhalb Hessens | 456 ha    | 0 ha      |
| Fläche innerhalb Hessens | 105373 ha | 194243 ha |

**Tab. 2**: Anteil der Landnutzung an der Gesamtfläche der jeweiligen Flusseinzugsgebiete

| Landnutzung | Kinzig<br>[ha] | [%] | Nidda<br>[ha] | [%] |
|-------------|----------------|-----|---------------|-----|
| Acker       | 32599          | 31  | 89038         | 46  |
| Gewässer    | 141            | 0   | 208           | 0   |
| Grünland    | 19561          | 19  | 23748         | 12  |
| Siedlung    | 8249           | 8   | 21586         | 11  |
| Wald        | 44822          | 43  | 59663         | 31  |
| Gesamt      | 105373         | 100 | 194243        | 100 |
|             |                |     |               |     |

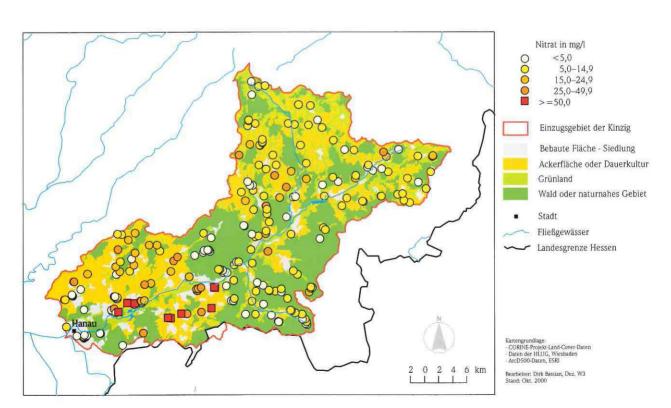



Abb. 8: Nitratkonzentrationen der Grund- und Rohwässer im Einzugsgebiet der Nidda.

Grünland, Siedlung, Gewässer und Wald zu erfassen. Die Bedeutung von möglichen Gefährdungspotenzialen (z. B. landwirtschaftlich genutzte Flächen) wird schon aus dieser einfachen tabellarischen Übersicht ersichtlich.

Noch anschaulicher wird die Betrachtung durch die grafische Verknüpfung von qualitativen Daten (hier Nitratkonzentrationen der Grund- und Rohwässer) mit der Landnutzung bzw. mit Grundwasserleitern innerhalb eines größeren Grundwasserkörpers. In

Abb. 8 werden die aktuellen Nitratkonzentrationen der Grund- und Rohwässer in Zusammenhang mit der Landnutzung dargestellt. Ohne viel Aufwand ist die Häufung erhöhter Nitratkonzentrationen in ackerbaulich genutzten Flächen deutlich erkennbar. Abb. 9 zeigt die vorliegenden hydrogeologischen Verhältnisse, von denen sich wiederum wichtige Aussagen wie Verschmutzungsempfindlichkeit des Grundwasserkörpers u. a. ableiten lassen.

#### 3. Ausblick

- Die GruWaH stellt den Anwendern eine gut sortierte Auswahl von Auswertemöglichkeiten zur Verfügung. Das betrifft nicht nur Auswertungen und Anwendungen, die im HLUG vorgenommen werden, sondern auch den gesamten Umweltressortbereich.
- Durch die vielfältigen Selektionsmöglichkeiten bzw. Aggregationsoptionen ist die GruWaH sowohl für die selektive, auf einzelne Messstellen
- bezogene Auswertung als auch für die flächenhafte bzw. überregionale Darstellung der Grund- und Rohwasserbeschaffenheit gut geeignet.
- Die GruWaH stellt eine wichtige Datengrundlage für die Bearbeitung der WRRL dar.
- Die geplante Erweiterung um eine grafische Auswerteoberfläche wird den Einsatzbereich der GruWaH nochmals erweitern.

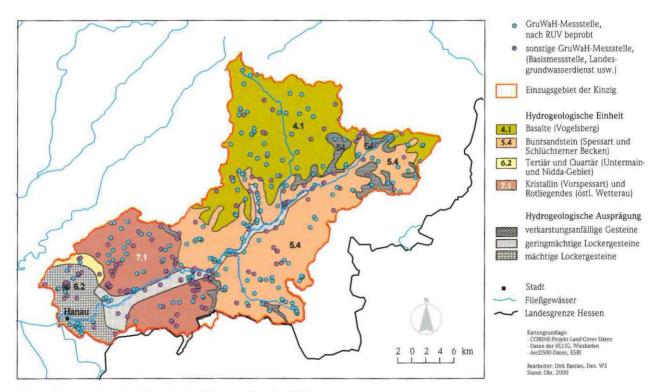



Abb. 9: Hydrogeologische Einheiten im Einzugsgebiet der Nidda.