Radon in und um Hessen

Online-Seminarreihe des Hessischen Landesamtes für Naturschutz, Umwelt und Geologie (HLNUG) und dem Hessischen Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz (HMUKLV)

Wo findet Radonexposition statt? Wie hoch ist das Risiko?

Risiko ↔ Nutzen von Radonexposition: Ziele und offene Fragen

Therapie (niedrige Dosen)

- Behandlung von chronisch entzündlichen Erkrankungen (Rheumatoide Arthritis, Psoriasis u.a.)
- →Gesteigerte Mobilität (Schmerzlinderung, nach 3-4 Wochen, hält 6-12 Monate an)

Radon-Behandlung: "Ganzkörper"-Exposition

Quelle: Der Spiegel

Chronisch entzündliche Erkrankungen

[Morbus Bechterew Journal 2006 No. 107]

Rheumatoide Arthritis-Gelenk

Eintrittspforten für Radon und Tochternuklide in den Organismus

Organe mit Epithelien

- 1. Lunge
- 2. Haut
- 3. Verdauungstrakt

Radon (gasförmig):

Diffusion über die Epithelien + Aktiver Transport durch den Blutstrom Abhängig von Löslichkeit

Tochternukliden (fest):

╋

Adsorption an Epithelien (direkt oder über Aerosole) Reichweite der α-Teilchen ca. 30-70 μm (Tiefe Epidermis 100 μm) Abhängig von Aerosolgröße und Atmungsrate

Was macht die Dosisbestimmung bei Radon so schwierig?

Was wir wissen wollen:	Dosis [J/kg], deponierte Energie pro Masse / Volumen
Was wir messen können:	Aktivitätskonzentration, d.h. Zerfälle s ⁻¹ / Volumen [Bq/m ⁻³]
Was wir kennen:	Freigesetzte Energie für einzelne Zerfälle

Außen:Aktivitätskonzentration x Verweilzeit \checkmark MessungWeitere Faktoren (Belüftung \rightarrow Gleichgewichtsfaktor)

Im Organismus:

Anteil von Radon + Tochternukliden die in den Organismus gelangen Verweilzeit in Zielorganen und Zielgeweben

Masse/ Volumen der Zielorgane

 \rightarrow Physikalische Dosis [Gy = J/kg]

Wenige experimentelle Messungen

✓ → Abschätzung von Äquivalentdosis + effektiver Dosis mit Modellrechnungen
✓ → Ziel: Dosiskonversionsfaktoren

Radon-Tochternuklide

Anheftung hochgeladener Zerfallsprodukte in fester Form, Aerosole (1-100 s)

- Simulation der ICRP (ICRP 137):
 - "Externe" Tochternuklide machen >95 % der Dosis aus, Radongas + "interne" Tochternuklide <5 %</p>
 - Lungenäquivalentdosis >95 % der effektiven Dosis

Deposition von Radon-Tochternukliden im Respirationstrakt

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FRIEDRICH-ALEXANDER UNIVERSITÄT

651

GOETHE 😨

Aktivitätsmessungen am Probanden

- Exposition eines Probanden im Radonheilstollen (1h, 27-77 $\frac{kBq}{m^3}$, aktive Filterung der Zerfallsprodukte)
- Aufnahme von γ-Spektren (Thorax und Abdomen, Zeitverlauf)
- Bestimmung des zeitlichen Aktivitätsverlaufes (Fig. 2)
- Simulation des zeitlichen Aktivitätsverlaufes von Radon
 Bestimmung von HWZ in schneller + langsamer Komponente
- \rightarrow Berechnung der Dosis

 $(Zerfälle \rightarrow deponierten Energie \rightarrow Normierung auf Masse)$

 Dosiswerte für Exposition (1 Std., 55 kBq/m³) im 1-stelligen µGy –Bereich Normierung auf gesamte Messregion/ Annahme: homogene Dosisverteilung (Zielorgane?) Thorax: Akkumulation der direkt inkorporierten "externen" Zerfallsprodukte
 Ein geringer Anteil Radon wird länger im Körper gespeichert (Fig. 2) Dosisbeitrag >80 %/ Fettgewebe, Knochenmark?

Lungenkrebs-Risiko: Biologische Dosimetrie

Kreuzer M, Müller KM, Brachner A, Gerken M, Grosche B, Wiethege T, Wichmann HE (2000). Histopathologic findings of lung carcinoma in German uranium miners. Cancer. DOI: 10.1002/1097-0142(20001215)89:12-2613::aid-cncr14>3.0.co;2-y

1. DNA Schadensmarker

DNA Reparatur in Lungengewebe erfolgt langsam \rightarrow Anfälligkeit für Fehler ist hoch

Mirsch J, Hintz L, Maier A, Fournier C, Löbrich M. <u>An Assessment</u> of Radiation Doses From Radon Exposures Using a Mouse Model <u>System</u>. Int J Radiat Oncol Biol Phys. 2020 Nov 1;108(3):770-778. doi: 10.1016/j.ijrobp.2020.05.031

Tiermodelle (v.a. Maus): nur bedingt auf Menschen übertragbar! Anatomie, Physiologie unterschiedlich

Absorbierte Dosis in Atemwegsbereichen sehr variabel Abhängig von Geschwindigkeit des mukoziliären Transports (MCT), ab 8. Generation langsamer als Zerfall zu ²¹⁰Pb (~52 Min)

Füri P, Farkas A, Madas BG, Hofmann W, Winkler-Heil R, Kudela G and Balásházy I. <u>The degree of</u> inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory <u>tract.</u> Radiat Environ Biophys. 2020; 59(1): doi: 10.1007/s00411-019-00814-0

GSI Helmholtzzentrum für Schwerionenforschung GmbH

2. Chromosomenschäden

Modell für Lungenepithel Air liquid Interphase culture (3D) Normale humane bronchiale Epithelzellen

Emura et al., Exp Toxicol Pathol., 2015

3. Funktionalität des Flimmerepithels

Höhere Dosen (0.5 Gy α-Teilchen) können MCT reduzieren

Niedrigere Dosen (Radontherapie) verbessert MCT bei Patienten

Passali D., Gabelli G., Passali G.C., Mösges R., Bellussi L.M: Radon-enriched hot spring water therapy for upper and lower respiratory tract inflammation. Otolaryngol Pol 2017; 71 (4): 6-12

10

FRIEDRICH-ALEXANDER

651

GOETHE 😥

TECHNISCHE

Chromosomale Veränderungen und therapeutische Wirkung nach Radonexposition (Patienten)

In vitro: Was erwarten wir?

- \rightarrow Erhöhte Relative Biologische Wirksamkeit (RBW) von α-Teilchen
- → Komplexe cytogenetische Aberrationen: "fingerprint" nicht erhöht nach Radonexposition

RAD-ON 02

- Proben von 40 Patienten
- >1'000'000 Metaphasen
- 1'500 dizentrische Chromosomen
- 96 "Rogue-Zellen"

Chromosomale Schäden in Lymphozyten: → Keine Unterschiede vor und nach Therapie nachweisbar

Paz, N.; Hartel, C.; Nasonova, E.; Donaubauer, A.-J.; Frey, B.; Ritter, S. Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. Int. J. Environ. Res. Public Health 2021, 182, 757. doi.org/ 10.3390/ijerph182010757

RAD-ON 01

- Knochenmetabolismus C.
- Immunreaktionen d
- Entzündung e.

- → weniger Knochenabbau
- → Aktivierungsstatus verändert
- \rightarrow geht zurück
 - (u.a. Faktoren aus Fettgewebe)

Thiel G, Frey B, Gaipl US, Fournier C. Decrease of Markers Related to Bone Erosion in Serum of Patients with Musculoskeletal Disorders after Serial Low-Dose Radon Spa Therapy. Front 2017 Immunol Jul 25:8:882. doi: 10.3389/fimmu.2017.00882.

10.1080/08916934.2017.1284819.

Cucu A, Shreder K, Kraft D, Rühle PF, Klein G, Kullmann M, Rühle PF, Harrer A, Donaubauer A, Becker I, Sieber R, Klein G, Fournier C, Fietkau R, Gaipl US, Frey B. Temporarily increased TGFbeta following radon spa correlates with reduced pain while serum IL-18 is a general predictive marker for pain sensitivity. Radiat Environ Biophys. 2019 Mar;58(1):129-135. doi: 10.1007/s00411-018-0768-z.

Rühle PF, Wunderlich R, Deloch L, Fournier C, Maier Maier A, Wiedemann J, Rapp F, Papenfuß F, Rödel F, A, Klein G, Fietkau R, Gaipl US, Frey B. Modulation Hehlgans S, Gaipl US, Kraft G, Fournier C, Frey B. of the peripheral immune system after low-dose Radon Exposure-Therapeutic Effect and Cancer Risk radon spa therapy: Detailed longitudinal immune nt J Mol Sci. 2020 Dec 30;22(1):316. doi: monitoring of patients within the RAD-ON01 10.3390/ijms22010316. (Review) study.Autoimmunity. 2017 Mar;50(2):133-140. doi:

Psoriasis: Plaque-Entstehung nach Radonexposition

Pathomechanismus (Kim and Krüger, 2017)

Initiation: Immunreaktion auf Autantigene → Chronifizierung (Hyperproliferation von Keratinozyten)

10 Expositionen innerhalb von 2 Wochen (10x 39,2 ± 2,0 kBq/m³; je 1 Std.)

 \rightarrow Signifikante Verzögerung des Anteils von Tieren mit Plaques

→ Signifikant niedrigerer Schweregrad der Läsionen (Plaques)

Mausmodell: DC-IL-17A_{ind/ind}: (Wohn et al, 2015) Expression von transgenem IL-17Aind in CD11c+ dendritischen Zellen

Molekulare Marker:

- Systemische Effekte in Lymphknoten > lokale Effekte in der Haut, ähnlich UV
- Regulation von Faktoren der
 - Initiationsphase > chronische Phase
- o Indirekter Effekt:,
 - keine typische Strahlenantwort

Zusammenfassung

Radon-Exposition wird im Strahlenschutz immer eine Rolle spielen

Aufnahme von Radon und Tochternukliden ist sehr komplex: Dosisbestimmung ist schwierig

Epithelien, Adsorption, mukoziliärer Transport, Diffusion und aktiver Transport sind involviert

Wenige Datensätze mit direkten Aktivitätsmessungen an exponierten Menschen (Tieren) verfügbare

Unsere Messungen haben gezeigt:

→ Langzeitkomponente der gemessenen Aktivitätskonzentrationen zeigt hohen Dosisbeitrag von Radongas Aktivitäten von Radongas sind höher als von der ICRP vorhergesagt

- → Zytogenetische Veränderungen sind in Patienten nicht auf Radonexposition zurückführbar (Lymphozyten)
- → Mukoziliärer Transport und verlangsamte DNA-Reparatur in Lungengewebe: Lungenkrebs-Risiko?
- → Langzeitstudien in Radonpatienten bestätigen klinische Wirkung bei chronisch-entzündlichen Erkrankungen
- → Biomedizinische Untersuchungen in diesen Patienten und Untersuchungen am Tiermodell zeigen zugrundeliegende Mechanismen Osteo-immunologische Veränderungen

GEFÖRDERT VOM

GREWISa consortium

.. und Ihnen für Ihre Aufmerksamkeit!