

Für eine lebenswerte Zukunft

BURKHARDT

Geologische und hydrologische Bohrungen

Herausforderungen im "kritischen"
Stockwerksbau
Lösungen und Hintergründe

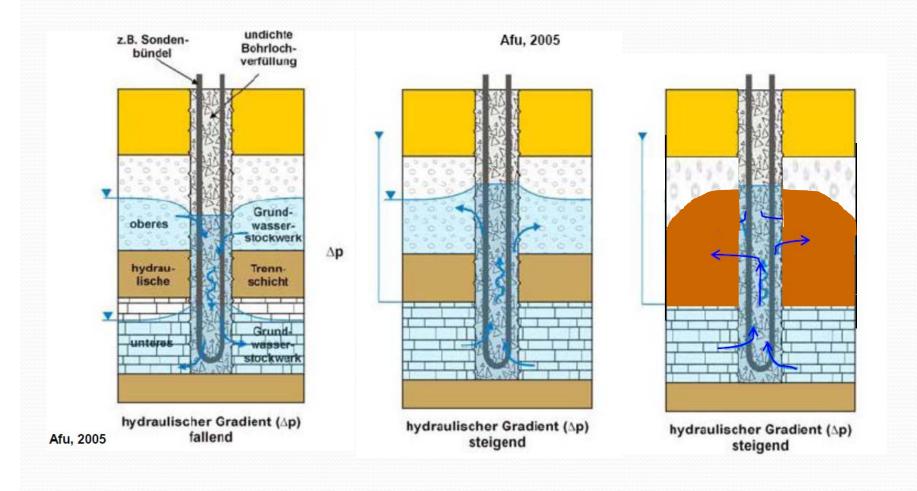
Fachgespräch Erdwärmenutzung Hessen 18.09.2014

Frank Burkhardt

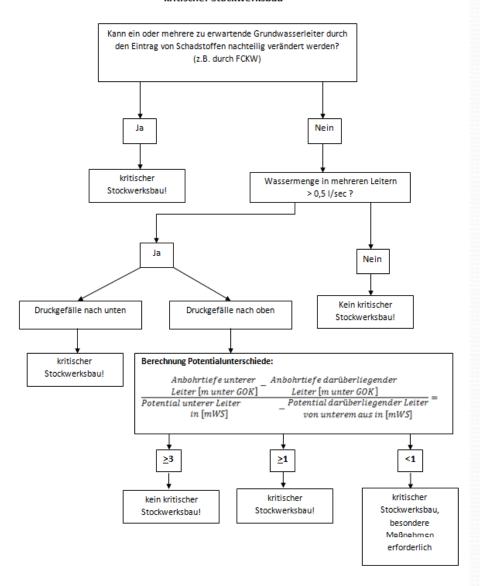
Bauingenieur (B.Eng), Brunnenbauer

Überblick

- Kritischer Stockwerksbau- wann und warum?
- Welche Grundlagen stecken dahinter?
- Wie kann ich ihn erkennen?
- Umgang bei Planung und Ausführung
- Fazit

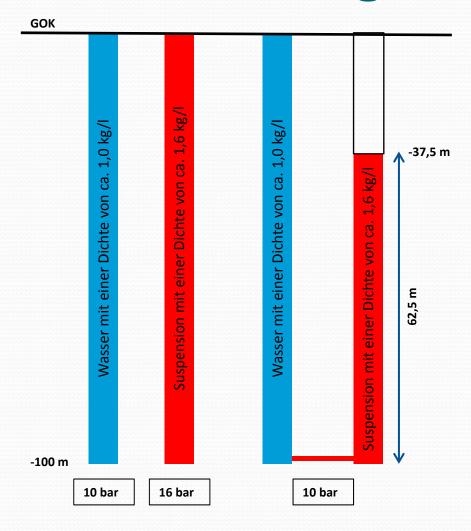

Warum kritisch?

- Die geologischen und hydrogeologischen Bedingungen in Deutschland sind zum Teil sehr komplex und können bei mangelhaft ausgeführten Erdwärmesonden zu Schäden führen
- Solche Schäden können auftreten wenn zum einen ein wasserempfindlicher Untergrund und zum anderen, Wasser aus anderen Horizonten aufeinander treffen.
- Bei der Festlegung des kritischen Stockwerksbaus lag das Augenmerk auf den Wasserverhältnissen in den Bohrungen


Wann kritisch?

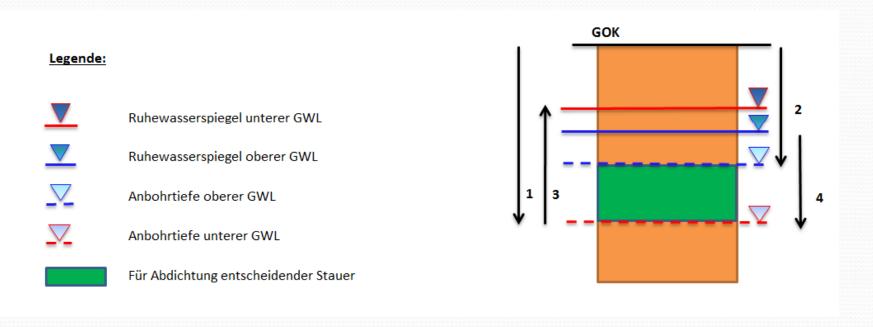
- 1. Wenn kontaminiertes Grundwasser vorhanden ist
- 2. Wenn mehrere Grundwasserleiter mit stark unterschiedlichen Druckpotentialen durchteuft werden
- 3. Wenn die Gefahr der Entwässerung eines Horizontes besteht
- Strömung >0,5 l/sec = 30 l/min; Hinweis: Die Anforderung an die Verpressanlage liegt bei > 40 l/min

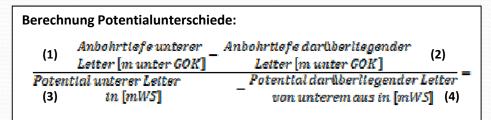
Szenarien

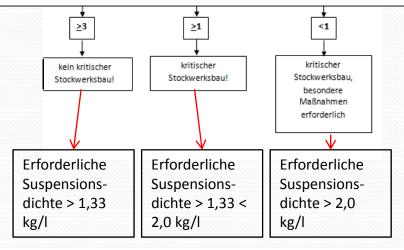

kritischer Stockwerksbau

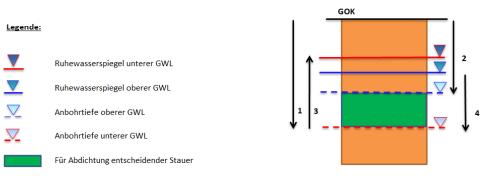
Vorgehensweise

 Flussdiagramm aus den Leitlinien
 Qualitätssicherung
 Erdwärmesonden Baden-Württemberg

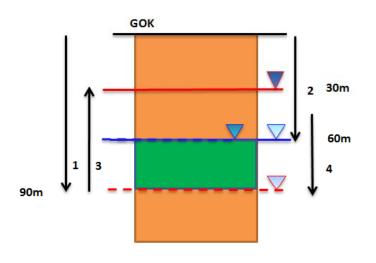

Erklärung Druckverhältnisse

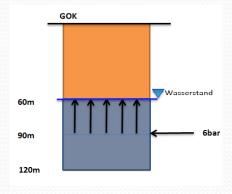

 1 bar Wasserdruck entspricht einer Säule von ca. 10 m Höhe unabhängig vom Durchmesser der Säule


Berechnung Potentialunterschiede



Berechnung Potentialunterschiede

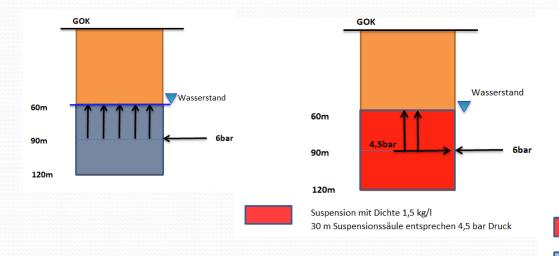


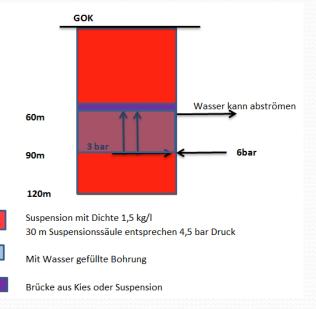

Nr. 1	Nr. 2	Nr. 3	Nr. 4	Nr. 5	Nr. 6
1: Anbohrtief	fe unterer GV	/-Leiter [m u	GOK]		
90	90	90	90	90	90
2: Anbohrtief	fe darüberlieg	gender GW-Le	eiter [m u GOI	(]	
70	60	50	45	40	35
3: Potential u	ınterer GW-L	eiter [mWS]			
60	60	60	60	60	60
4: Potential o	darüberliegen	der GW-Leite	r von unteren	n aus [mWS]	
20	30	40	45	50	55
Ergebnis					
0,5	1	2	3	5	11


Nr. 1	Nr. 2	Nr. 3	Nr. 4	Nr. 5	Nr. 6		
1: Anbohrtiefe unterer GW-Leiter [m u GOK]							
90	90	90	90	90	90		
2: Anbohrtie <mark>fe darüberlieg</mark> ender GW-Leiter [m u GOK]							
70	60	50	45	40	35		
3: Potential unterer GW-Leiter [mWS]							
60	60	60	60	60	60		
4: Potential darüberliegender GW-Leiter von unterem aus [mWS]							
20	30	40	45	50	55		
Ergebnis							
0,5	1	2	3	5	11		
				•			

Bohrung offen Strömung von unten nach oben

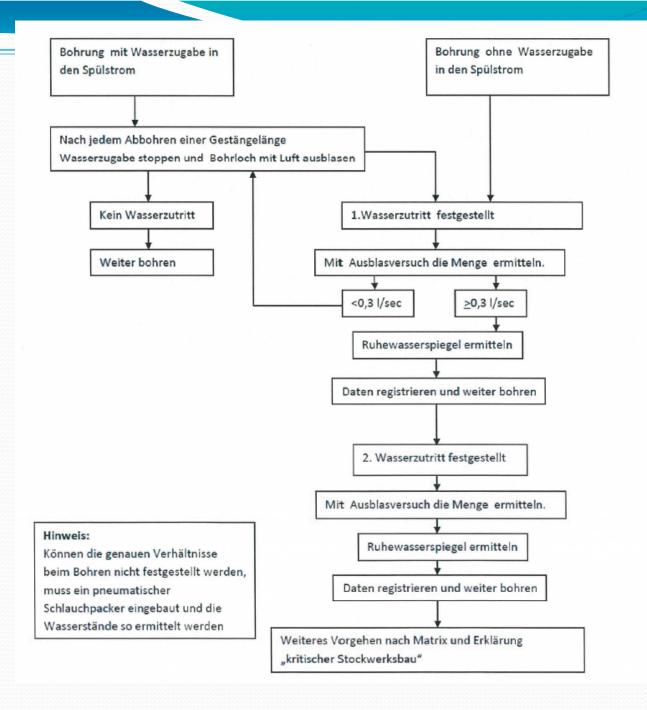
Bohrung bis 60m unter GOK verfüllt Strömung gestoppt



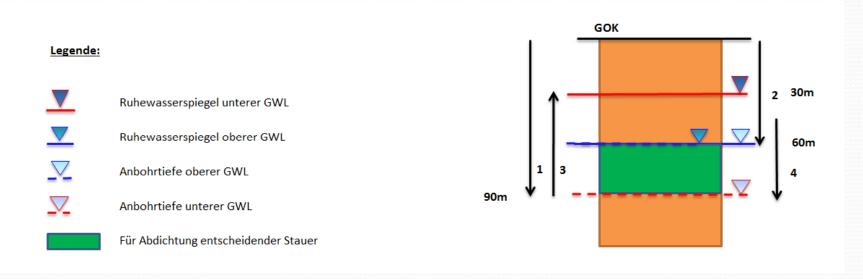

Bohrung bis GOK verfüllt Überdruck sorgt für sichere Abdichtung

Gefahrenpotential

Bohrung offen Strömung von unten nach oben Bohrung bis 60m unter GOK verfüllt Strömung nicht gestoppt Bohrung bis GOK verfüllt Grundwasser-Stauer wurde nicht wieder hergestellt Gefahr von Schäden vorhanden

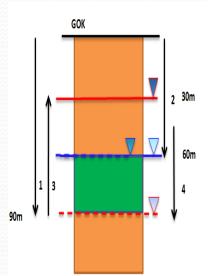

Erkennung von Wasserzutritten

- das Erkennen von Wasserzutritten in Bohrungen ist sehr wichtig und für die Funktionsfähigkeit der späteren Abdichtung ausschlaggebend
- Die bekannten Schadensfälle in Baden- Württemberg verbindet das gleiche Problem und das sind <u>nicht wieder</u> <u>hergestellte Grundwasserstauer</u>
- Da sich die Probleme hauptsächlich auf das Festgestein begrenzen und dort in den allermeisten Fällen mit einem Imlochhammer mir Druckluftspülung gearbeitet wird, beschränkt sich das folgende Beispiel auf dieser Bohrverfahren.


"Erkennen von Wasserzutritten bei direkten Spülbohrungen mit Luftspülung"

Folgende Randbedingungen sind einzuhalten:

- 1.Bohrung immer mit Luftspülung
- 2.In nicht standfesten Bereichen ist die Bohrung durch eine Verrohrung zu sichern
- 3.Die Ableitung des Bohrgutes muss über geeignete Preventer erfolgen
- 4.Um Staubbildung oder das verkleben der Bohrung zu verhindern, muss eine Zugabe von Wasser sowohl in die Luft, als auch am Preventer möglich sein


Fallbeispiele

- Erster GWL bei 60 m unter GOK ungespannt Wasser steht bei 60 munter GOK
- Zweiter GWL beim 90 m unter GOK gespannt, Wasser steigt um 60 m auf 30 m unter GOK

Ansprache beim Bohren

- Bis zum Anbohren des GW- Leiters wird kein Wasser aus dem Bohrloch ausgeblasen
- Beim anbohren tritt schlagartig Wasser mit aus, der GW-Leiter ist festgestellt, die Schüttung kann durch kurzes Spülen ermittelt werden
- Ist die Bohrstange abgebohrt, wird die Luftzufuhr geschlossen und in der Bohrung stellt sich der Ruhewasserspiegel ein
- Wie hoch das Wasser steht, kann über den Druck am Manometer und der ausgeblasenen Wassermenge beim öffnen des Luftschiebers bestimmt werden
- So können nach jedem abbohren einer Bohrstange Veränderungen am Druck festgestellt werden
- Wird nun der nächste GWL angebohrt ändert sich die ausgetragene Wassermenge schlagartig und kann bestimmt werden
- Die Ergiebigkeit der Wasserleiter entscheidet nun, wo sich der Mischwasserstand einpendelt und ob sich eine Wasserströmung einstellt

Umgang bei Planung und Ausführung

- Zugriff auf Bestandsdaten von vorherigen Projekten ermöglichen oft schon eine bessere Planung, das Rad muss nicht noch einmal erfunden werden
- Je besser eine Dokumentation einer Bohrung ist, desto einfacher ist der Umgang mit nachfolgenden Bohrungen
- Geschultes Personal ist zwingend erforderlich
- Wissen über Stockwerksbau oder eventuell auftretende Probleme muss für alle Beteiligten zugänglich sein und muss verbreitet werden

Fazit

- Ohne eine genaue Ansprache der Wasserverhältnisse ist eine ordentliche Hinterfüllung nicht immer möglich
- Nur eine gute und dauerhafte Abdichtung schützt vor weiteren Schadensfällen und sichert die Zukunft der Geothermie, der wahrscheinlich besten Energiequelle unserer Erde

Geothermie Energiequelle mit Zukunft

Wer heute nichts tut-

Lebt morgen wie gestern!

Fragen oder Anregungen?

Burkhardt GmbH& Co.KG Tulpenstraße 15 75389 Neuweiler Tel: 07055/92970 Internet: www.burkhardt-bohrungen.de e-mail: frank@burkhardt-bohrungen.de