Institution

Center for Environmental Systems Research (CESR)

Universität Kassel

Projekttitel

Auswirkungen des Globalen Wandels auf Ökosystemdienstleistungen in Hessen

Anhang

Laufzeit

01.12.2010 - 30.06.2015

Projektleitung

PD. Dr. Rüdiger Schaldach

Prof. Dr. Andreas Ernst

Projektbearbeitung und Durchführung

Jan Volland, Rebekka Hüfner, Jan Schüngel

Auftraggeber

Fachzentrum Klimawandel Hessen

im Hessischen Landesamt für Umwelt, Naturschutz und Geologie

Projektbetreuung

Fachzentrum Klimawandel Hessen

Kassel, Februar 2016

Inhaltsverzeichnis

1.	Verwendete Methoden für den Teilbereich Umweltpsychologie	3
2.	Verwendete Methoden im Teilbereich Landschaftsökologie	8
3.	Veränderung der Bewertung der Ökosystemdienstleistungen in Hessen	12
4.	Daten zur Berechnung der Szenarien-Analyse	13
5.	Datengrundlage ÖSDL Modellierung	16
6.	Simulationsergebnisse	22
7.	Literatur zur Analyse der Kohlenstoffspeicherung und Nährstoffretention	27

1. Verwendete Methoden für den Teilbereich Umweltpsychologie

Halbstandardisiertes Interview

Um die Vorgehensweise bei dem halbstandardisierten Interview zu verdeutlich, muss zunächst eine Abgrenzung zwischen einem quantitativen und einem qualitativen Interview erfolgen. Das quantitative Interview dient der Überprüfung vorab festgelegter Hypothesen. Es steht in der Tradition eines nomothetischen Wissenschaftsideals, das sich an der Logik der Forschung in den Naturwissenschaften orientiert (Flick, 1991 und Mayring, 1996). Objektivität gilt als oberste Maxime. Sie wird als Unabhängigkeit des Forschungsprozesses vom Subjekt verstanden. Subjektive Einflüsse auf das Ergebnis stellen eine Fehlerquelle dar, die durch methodische Maßnahmen ausgeschlossen werden soll (Hohl, 2000).

Das qualitative Interview hingegen wird genutzt um das Beschreiben, Interpretieren und das Verstehen von Zusammenhängen der Probanden zu erfragen. Eine qualitative Auseinandersetzung zeichnet sich vor allem durch eine nicht prädeterminierte und unverzerrte Vorgehensweise aus, die dadurch umfassende Information liefert. Herausragende Eigenschaften einer solchen Vorgehensweise sind die differenzierten und ausführlichen Beschreibungen individueller Meinungen der Befragten (Strauss, 1991).

Das primäre Ziel des qualitativen Vorgehens liegt nicht darin vorab festgelegte Hypothesen zu verifizieren, sondern neue substantielle Erkenntnisse über das Thema zu erlangen. Dies ist einer der Gründe für die Verwendung von offenen Fragen, da diese eine Selbstexploration des Befragten gewährleistet und somit eine umfassende Darstellung seiner Gefühle und Einstellungen (Froschauer und Lueger, 1992). Ein weiterer wichtiger Faktor ist die Atmosphäre in der ein Interview stattfindet. In einer heimischen Umgebung kann sich ein Proband ganz anders öffnen und mitteilen als in einem fremden Umfeld. Problematisch ist dabei, dass eine natürliche Gesprächssituation suggeriert werden soll, nicht aber die damit einhergehenden Regeln der Alltagskommunikation gelten (Lamnek, 1989).

Bei quantitativen Interviews geht es um eine Darstellung der zahlenmäßigen Ausprägung eines Phänomens, bei qualitativen Interviews wiederum um das Verstehen des Hintergrundes und den Zusammenhang eines Phänomens aus der Sicht des Befragten (Hohl, 2000). Der wichtigste Unterschied zwischen den beiden Interviewformen besteht darin, dass bei quantitativen Interviews versucht wird, die Subjektivität des Interviewers während des Interviews und der anschließenden Auswertung auszuschließen. Diese Subjektivität ist aber im Gegenzug bei dem qualitativen Interview erwünscht, wenn auch in kontrollierten Maß. Das qualitative Interview hingegen erfasst Daten auf mehreren Sinnebenen. Dies kann dazu führen, dass sich Widersprüche und Ambivalenzen des Befragten ergeben. Dies ist innerhalb des qualitativen Interviews durchaus vorgesehen, da sich hieraus Rückschlüsse auf das Verständnis und den Wissensstand des Befragten zu dem Themengebiet erschließen (Froschauer & Lueger, 1992).

Nachdem der Unterschied zwischen qualitativen und quantitativen Interviews verdeutlicht wurde, wird nun die Umsetzung des Interviews näher erläutert. Für die Umfrage wurde ein Halbstandardisiertes Interview gewählt, was in Abgrenzung zum standardisierten Interview steht. Das standardisierte Interview gehört zu den quantitativen Interviews und wird für die

Messung von relevanten Sachverhalten verwendet. Dieser Interview-Typ besitzt eine akribische Reihenfolge der Fragen sowie eine festgelegte Antwortmöglichkeit (z.B. ja oder nein). Dadurch wird den Daten, die aus dem Interview gewonnen werden, ein hoher Grad an Vergleichbarkeit eingeräumt. Eine asymmetrische Kommunikationsstruktur ist in jedem Fall in diesen Interview-Typ gegeben. Dies wird deutlich sobald Nachfragen des Probanden aufkommen. Um eine Beeinflussung des Probanden durch Nachfragen zu vermeiden, antwortet der Interviewer mit vorgegebenen und vorformulierten Fragen. Dies erfordert eine gründliche Auseinandersetzung mit der Thematik im Vornherein, um auf alle Eventualitäten reagieren zu können. Die Stärken des standardisierten Verfahrens kommen dann zum Tragen, wenn es um eine quantitative Aussage geht und/oder eine große Anzahl an Befragten erfasst werden soll. Des Weiteren darf das Thema nicht zu komplex sein sondern muss einen schnellen Zugang und Antwortmöglichkeiten gewährleisten. So ist zum Beispiel die "Sonntags Frage" Sinnbild für eine solche Frage. (Herrmanns, 1991; Hopf, 1978 und Mayring, 1996).

Im Gengensatz dazu steht das halbstandardisierte Interview. Dies beruht in erster Linie auf dem qualitativen Anspruch und der deutlich längeren Auseinandersetzung im Vergleich zu standardisierten Interviews. Bei den Fragen wurde sich an dem beispielhaften Interviewleitfaden aus Weber (1991) und der Vorgehensweise von Roman Seidl (2009), der ansässig am CESR war, orientiert. Diese Interviewform hat das Ziel der Exploration von Zusammenhängen und Sachverhalten von Bezugssystemen der Probanden (Hopf 1978). Zur Vorgehensweise gibt es einen groben Leitfaden oder einen Fragenkatalog der individuell benutzt werden kann. Dem Interviewer steht es frei an bestimmten Stellen innerhalb des Interviews abzuweichen, um z.B. nachzuhaken oder abweichende Fragen zu stellen, die zum Verständnis beider Seiten beitragen können. Diese Vorgehensweise beeinträchtigt die Vergleichbarkeit der Interviews untereinander, schafft aber im Gegenzug eine gewisse Tiefe. Sie kratzt das Themengebiet nicht nur oberflächlich an, sondern geht auf individuelle Faktoren der Probanden ein. Faktoren können unter Umständen Vorlieben, Hobbys und/oder beruflich bedingte Faktoren sein (Flick, 1991 und Mayring, 1996).

In den gemachten Interviews wurden offene und geschlossene Fragen verwendet. Offene Fragen bieten ein sehr großes Spektrum an Antwortmöglichkeiten. Durch sie kann man Erfahrungen, Meinungen und Wünsche der Gesprächspartner erfahren. Als Beispiel einer der verwendeten Fragen: "was fällt Ihnen bei den Begriff Wald ein" (3 Begriffe), die Antwortmöglichkeiten sind vielfältig und offen (Porst 2009).

Die geschlossenen Fragen hingegen geben eine klare und stringente Linie vor, hier sind die Antwortmöglichkeiten eingeschränkt: "ja", "nein" oder "weiß nicht" sind mögliche Antworten, die z.B. auf die Frage: "Besitzen sie einen Holzofen" gegeben werden können. Diese Frage ist nur mit ja oder nein zu beantworten. Hier sind die Antwortmöglichkeiten definiert, entweder durch die Frage selbst oder durch die explizite Nennung der zur Auswahl stehenden Antworten (Porst 2009).

Der persönliche und soziale Kontext, in dem die analysierten Deutungen und Reaktionen stehen, muss in ausreichendem Umfang erfasst sein. Seine Kenntnis ist unter anderem Voraussetzung für die Interpretation nicht antizipierter Reaktionen auf die im Interview thematisierten Kommunikationsinhalte (Merton, Fiske und Kendall, 1956). Zur Auswertung der Interviews trägt eine aufgenommene Tonaufnahme bei, um bei einer späteren Transkription – sei sie qualitativ oder quantitativ – die persönlichen Einflüsse des Befragten auszuwerten und bewerten zu können.

Das Problem einer jeden Befragung ist der Wahrheitsgehalt zwischen dem, was die Befragten antworten und dem, wie sie tatsächlich Denken bzw. Handeln. Eine wahre Abbildung der Realität bleibt darum immer fragwürdig.

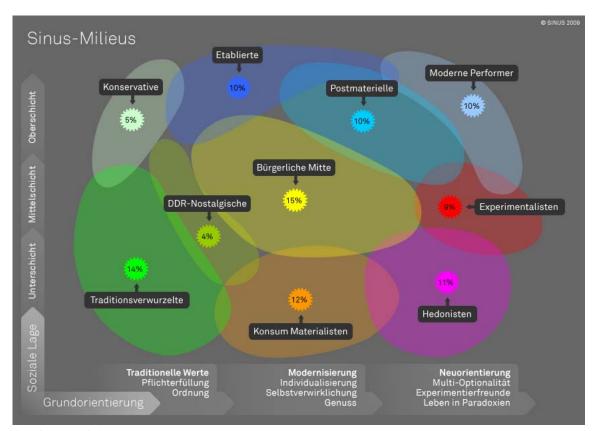
Struktur-Lege-Technik

Die Struktur-Lege-Technik (SLT), welche von Groeben, Wahl, Schlee und Scheele (1988) bzw. Scheele und Groeben (1988) entwickelt wurde versucht dem Probanden subjektive Theorien bewusst zu machen. Diese Theorien sind nach Groeben und Scheele theoretische Zusammenhänge, die die Menschen im Alltagsleben im Kopf haben und die ihre Weltansicht und ihr Handeln bestimmen(Groeben et al., 1988). Diese Analysemethode wurde bspw. im klinischen Bereich angewendet, um die Vorstellungen und Zusammenhänge von Ursache und Wirkung von Krankheiten bei den Patienten zu untersuchen oder zur Abfrage von "Ironie" (Scheele und Groeben, 1988).

Die Vorgehensweise der SLT besteht aus zwei Schritten. Zunächst wertet der Interviewer das Interview aus und versucht anschließend eine visuelle Darstellung der Zusammenhänge mittels Kärtchen und Pfeilen vorzunehmen. Hierbei wurden von Groeben und Scheele ein komplexes System von Regeln und Symbolen entwickelt, wie ein Interview visualisiert und ausgewertet werden kann (Groeben et al., 1988, Scheele und Groeben, 1988). Anschließend wird in einem zweiten Termin dem Interviewten das Modell seiner subjektiven Theorie vorgelegt und erläutert. Dabei soll dieser das Modell modifizieren, wenn er dem gelegten Schaubild nicht zustimmt.

Für das Projekt, wurde eine etwas abgewandelte Form der SLT angewandt, die das Grundkonzept der Visualisierung und des Dialoges enthält. Spezifischere Anforderungen wurden nicht einbezogen, etwa die Erreichung eines Konsenses (siehe auch Seidl, 2009). Ziel dieses Interviews war es, die Alltagsvorstellungen (subjektive Theorie) zu dem Fragebereich der Ökosystemdienstleistungen zu erforschen, um anschließend etwas über das kausale Verständnis von ESS in Hessen zu erfahren. Da die Probanden ihre allgemeinen Vorstellungen zu diesem Thema darstellen sollten, wurde vor allem auf die Konsenserreichung verzichtet. Insgesamt sollten die Interviews gewisse Schlussfolgerungen ermöglichen (Groeben et al., 1988). Für das Interview bringt die SLT zwei Vorteile. Zum einen kann explizit auf die von den Probanden genannten Begriffe eingegangen werden und zum anderen ergibt sich die Möglichkeit zur Visualisierung der Gedanken.

Die Umsetzung erfolgte mit drei Hilfsmitteln:


- Vorbereitete Kärtchen
- Pfeilen
- Probandenkärtchen

Die vorbereiteten Kärtchen zeigten die Ökosysteme Wald, Wasser, Landwirtschaft und Landschaft. Zusätzlich gab es ein Ichkärtchen und ein Klimawandelkärtchen. Die Pfeile stellten die unterschiedlichen Beziehungen dar, welche die Begriffe zueinander haben können. Dabei gab es positive und negative Beziehungen und Wechselwirkungen. Die Probandenkärtchen wurden mit den genannten Begriffen beschriftet.

Wichtig war, dass die Probanden ihre persönliche Sichtweise mit Hilfe der SLT darstellen und diese im Dialog zu entwickeln. Hierbei wurde ihnen frei Hand gelassen, dauerhaft Begriffe zu ändern, Kärtchen zu verschieben oder zu entfernen oder die gesamte Struktur noch einmal zu verändern. Erst nachdem die Probanden der Ansicht waren, dass ihnen die Struktur stimmig erschien, wurde das Schaubild kommunikativ validiert und abfotografiert.

Sinus Milieus

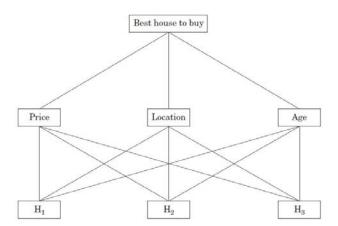
Die vom Sinus-Institut entwickelten Sinus Milieus ermöglichen es Menschen anhand ihrer Lebensauffassung und Lebensweise in bestimmte soziale Milieus zu gruppieren (Sinus Sociovision, 2009). Diese Auffassungen werden mit demographischen Eigenschaften wie Bildung oder Beruf kombiniert um den Menschen umfassend wahrzunehmen. Die Einteilung der deutschen Bevölkerung in diese Sinus Milieus ist folgender Abbildung zu entnehmen. Die Gruppierung erfolgt in zehn unterschiedliche Milieus, die auch für das Projekt benutzt werden. So stellt die "bürgerliche Mitte" mit 15 Prozent Anteil an der gesamten deutschen Bevölkerung beispielsweise das größte Milieu, die "DDR-Nostalgischen" mit vier Prozent Anteil das kleinste.

Abbildung A1: Kartoffelgrafik zur Verortung der Milieus nach sozialer Lage und Grundorientierung Quelle: www.sociovision.de (Zugriff 26.03.2010)

Microm Geo Milieus®

Zusätzlich kann jedes Haus in Deutschland durch die von Sinus und Microm entwickelten microm Geo Milieus® über ein statistisches Verfahren einem Sinus-Milieu zugeordnet werden. Dies hat eine räumliche Verortung der Milieus zu folge. Die nächste Abbildung zeigt ein Beispiel einer solch räumlichen Verortung in Potsdam. Jedem Haus wurde ein dominantes Milieu zugeordnet, ersichtlich durch unterschiedliche Farbzuweisung.

Im Projekt wurden so die durch den Fragebogen gewonnen Erkenntnisse in Form von Daten und Antworten diesen bestimmten Milieus zugeteilt und mit microm Geo Milieus® räumlich in Hessen verortet. Dies ermöglicht zunächst einmal den Vergleich der Daten untereinander in Abhängigkeit der verschiedenen Milieus. So können Erkenntnisse über die Nachfrage von ÖSDLS der Milieus gewonnen werden. Auf die Verortung in der Fläche erfolgt eine Georeferenzierung in GIS, d.h. die räumlichen Informationen werden einem Datensatz zugeordnet. Dies ermöglicht schließlich die Darstellung der Informationen über Nachfrage nach Ökosystemdienstleistungen in Hessen in der Fläche in Abhängigkeit der verschiedenen Milieus.


Abbildung A2: Dominantes Milieu auf Hausebene am Beispiel Potsdam. Quelle: www.sinusinstitut.de (Zugriff: 08.03.2015).

2. Verwendete Methoden im Teilbereich Landschaftsökologie

Analytic Hierarchy Process

Der von SAATY entwickelte "Analytic Hierarchy Process", kurz AHP, dient zur Unterstützung von Entscheidungsprozessen. Die Vorgehensweise sieht dabei vor, dass die Hauptfragestellung in Teilprobleme untergliedert wird. Anschließend werden die einzelnen Teilprobleme zu einem Entschluss aggregiert. So soll die Entscheidungsfindung durch die Organisation von Erinnerungen, Wahrnehmungen, Gefühlen und Urteilen erleichtert werden (Saaty, 1994). Nach Ramanathan (2001) kann der Prozess in vier Schritte unterteilt werden:

1. Das zu entscheidende Problem wird in ein hierarchisches Modell überführt. Die oberste Ebene besteht dabei aus dem Hauptproblem bzw. der Fragestellung. Die mittleren Ebenen enthalten Kriterien die Einfluss auf die Fragestellung nehmen. Die untere Ebene besteht aus den einzelnen Alternativen zum Erreichen des Ziels. Folgende Abbildung zeigt exemplarisch ein einfaches Hierarchisches Modell am Beispiel "Welches Haus eignet sich am besten zum Kauf?", welches das Hauptproblem ist und somit in der obersten Ebene angeordnet wird. In der mittleren Ebene sind dann Kriterien zum Erreichen dieses Hauptziels angeordnet, also Preis, Standort und Alter. Die unterste Ebene enthält dann schließlich Haus 1, Haus 2 und Haus 3, welche die einzelnen Alternativen darstellen.

Abbildung A3: Beispiel eines einfachen hierarchischen Modells für einen AHP nach Ramanathan (2001).

- 2. Paarweise Vergleiche werden erstellt um eine wertende Matrix zu erhalten. Dazu müssen die Elemente einer Ebene jeweils unter Berücksichtigung eines bestimmten Elementes aus einer darüber liegenden Ebene verglichen werden. In Anlehnung an Abbildung A3, wären diese paarweisen Vergleiche dann beispielsweise der Vergleich von Preis, Standort und Alter bezogen auf das beste Haus oder der Vergleich von Haus 1 zu Haus 2 zu Haus 3, bezogen auf den Preis. Die Wertung kann mit der nachfolgenden Tabelle A1 vorgenommen werden, immer nach der Fragestellung: "Welches Kriterium / Welche Alternative ist relevanter im Bezug zum übergeordneten Element?". Unterscheiden sich beide Kriterien nicht in ihrer Relevanz wird eine "1" gewählt, ist der Relevanz-Unterschied sehr hoch wird eine "9" gewählt (siehe Tabelle A1). Das Kriterium im paarweisen Vergleich erhält dann den Kehrwert dieser Zahl.
- 3. Prioritäten werden bestimmt und die Folgerichtigkeit der Vergleiche wird überprüft. Nach

Saaty (1990, 2000) erhält man die Prioritäten durch Bildung des Eigenvektors der wertenden Matrix. Bildet man so beispielsweise den Eigenvektor der Matrix, welche Preis, Standort und Alter des Hauses vergleicht, sind aus diesem direkt die Prioritäten in Bezug auf das beste kaufbare Haus abzulesen. Die Folgerichtigkeit der Vergleiche wird durch die Berechnung des "consistency ratio" auch "CR" definiert. Damit die Wertungen verlässlich sind, sollte der CR nicht höher als 0,1 sein.

4. Die einzelnen Prioritäten werden zusammengefasst. Dadurch wird die Bewertung der Alternativen im Hinblick auf die Fragestellung dargestellt.

Tabelle A1: Bewertungsschema für AHP

Wertung	Definition	Interpretation
1	gleiche	Beide verglichenen Elemente haben die gleiche Bedeutung für
	Bedeutung	das nächsthöhere Element
3	etwas größere	Erfahrung und Einschätzung sprechen für eine etwas größere
	Bedeutung	Bedeutung eines Elements im Vergleich zu einem anderen
5	erheblich größere	Erfahrung und Einschätzung sprechen für eine erheblich größe-
	Bedeutung	re Bedeutung eines Elements im Vergleich zu einem anderen.
7	sehr viel größere	Die sehr viel größere Bedeutung eines Elements hat sich in der
	Bedeutung	Vergangenheit klar gezeigt.
9	absolut	Es handelt sich um den größtmöglichen Bedeutungsunterschied
	dominierend	zwischen zwei Elementen
2,4,6,8	Zwischenwerte	

DNDC Modell

Das DNDC Modell wurde an der Universität von New Hampshire am Institute for the Study of Earth, Oceans and Space (IEOS) entwickelt. Die Abkürzung DNDC steht für Denitrifikation-Dekomposition. Es ist ein prozessorientiertes Computer-Simulationsmodell zur Abbildung des Kohlenstoff- und des Stickstoffkreislaufs in Agrarökosystemen. Das Modell dient als Werkzeug zur Analyse von Ernteerträgen, Kohlenstoffspeicherung, Nitratauswaschung sowie von C und N Emissionen in die Atmosphäre. Eine Übersicht der Modellkomponenten ist in Abbildung A4 dargestellt.

Die erste Komponente umfasst die Teilmodelle Bodenklima, Pflanzenwachstum und Mineralisation von organischer Bodensubstanz. Als ökologische Treiber werden Informationen über Klima, Boden, Vegetation und Bewirtschaftung durch den Menschen vorgegeben. Basierend auf diesen Daten werden in der ersten Komponente u.a. die die Bodenfaktoren Bodentemperatur, Feuchtigkeit, pH-Wert und Redoxpotenzial berechnet.

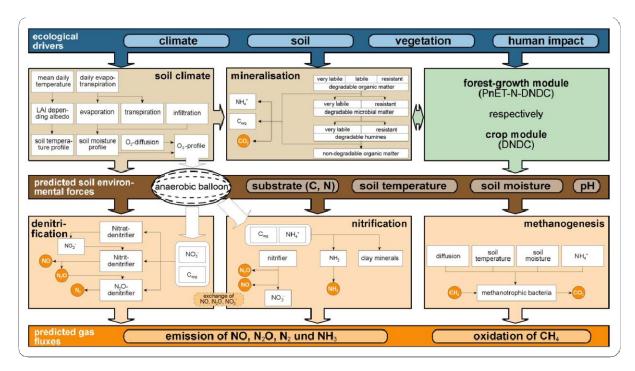


Abbildung A4: Komponentenübersicht des DNDC Modells, Quelle: (IEOS 2009, S. 2)

Die zweite Komponente umfasst die Teilmodelle Nitrifikation, Denitrifikation sowie Fermentierung. Sie simulieren die Emissionen von CO₂, Methan, Ammonium, Stickstoff, Stickstoffmonoxid und Stickstoffdioxid im Boden-Pflanzen Modell. Die Mechanismen des Modells basieren auf den Gesetzen der Physik, Chemie sowie der Biologie und empirischen Gleichungen aus Laboruntersuchungen (IEOS 2009, S. 1).

Das Pflanzenwachstum spielt eine wichtige Rolle bei der Regulation des Bodenwassers und des Stickstoffhaushaltes. Es hat einen Effekt auf biochemische und geochemische Prozesse im Boden. Im Modell können die Parameter Biomassezunahme und Verteilung, Erntemaximum, Wasser- und Stickstoffnachfrage sowie Stickstoffaufnahmefähigkeit für die einzelnen Feldfrüchte genauer definiert werden. Für die häufigsten Sorten ist eine Zusammenstellung der Parameter bereits vorhanden. Das Feldfruchtwachstum wird mithilfe von Temperatur, N-Belastung und Wasserangebot im Tagesintervall simuliert. Auch werden im selben Intervall Fotosynthese, Respiration, C-Verteilung, Wasser- und N-Aufnahme modelliert und gespeichert. Dabei basiert der Bedarf an Stickstoff der Feldfrüchte auf dem für das tägliche Wachstum benötigten Optimum-Wert und dem C/N Verhältnis. Während der Ernte verbleibt Biomasse aus Wurzeln und anderen Pflanzenresten im Boden. Die Reste werden abhängig vom C/N Verhältnis in drei Abfallpools eingeteilt: sehr labile, labile und resistente Abfall Poole. Die Aufnahme von Resten in den Bodens bedeutet Input an organischen Bestandteilen, die im biogeochemischen Kreislauf gespeichert werden. Bei der nächsten Bodenbearbeitung wird diese Biomasse im Modell wieder mit einbezogen (IEOS 2009, S. 3).

Das Modell kann in zwei Modi betrieben werden, Standort und regional bezogen. Für dieses Projekt wird der Regionalmodus verwendet. Im Standortmodus findet die Simulation auf Schlagebene statt. Die Inputparameter müssen manuell eingetragen werden. Im Modell können auf drei Hauptseiten detaillierte Informationen über Klima, Boden, Landwirtschaftsmana-

gement eingegeben werden. Letzteres beinhaltet weiterhin acht Unterfenster zur Feldfrucht, Fruchtfolge, Ackerbau, Düngung, Bewässerung, Überschwemmung (z.B. für Reis), Beweidung und Mahd (IEOS 2009, S. 5ff).

Im Regionalmodus können größere Gebiete simuliert werden. Dieser Modus wird in dieser Arbeit für die Simulation der Ernteerträge in Hessen verwendet. Alle Inputdaten müssen in einer Datenbank für jede Rasterzelle vorher zusammengefasst werden. Es bestehen zwei Kategorien an Dateien: einmal GIS Dateien mit lokal differenzierten Informationen zu Boden und Landwirtschaftsmanagement und auf der anderen Seite Dateien, die in Bibliotheken organisiert sind, z.B. Klimadaten (IEOS 2009, S. 6). Durch die größere räumliche Ausdehnung können im Regional Mode keine solch detaillierten Informationen wie im Site Mode generiert und verwendet werden. Für die Simulation mit DNDC im Regional Mode werden folgende Eingangsdaten benötigt:

Tabelle A2: Eingangsparameter für DNDC für jede Rasterzelle.

Datei	Parameter	Einheit
1	Geografische Koordinaten	Grad
	Stickstoffkonzentration im Niederschlag	ppm
	Kohlenstoff in organischen Bodensubstanz	kg C/kg
	Tonanteil im Boden	%
	pH Wert im Boden	-
	Bodendichte	g/cm ³
2	Feldfrüchte die auf der Zelle angebaut werden	ha
3	Düngerauftrag pro Feldfrucht	kgN/ha/yr
4	Bewässerte Fläche der Zelle	%
5	Aussaat- und Erntedatum jeder Feldfrucht	Tag

Diese Eingangsdaten werden im Modell für den gesamten Simulationszeitraum als konstant angenommen. Weiterhin müssen die Klimadaten für die Region vorgegeben werden (siehe Tabelle A3).

Tabelle A3: Klimadateien für jede Rasterzelle pro Tag über den Simulationszeitraum.

Parameter	Einheit
Max und Min Lufttemperatur	°C
Niederschlag pro Tag	cm
Windgeschwindigkeit	m/s
Solarstrahlung	MJ/m²/day

3. Veränderung der Bewertung der Ökosystemdienstleistungen in Hessen

Tabelle A4: Aktuelle Bewertung der Ökosystemdienstleistungen

Milieu	d1_1	d1_2	d1_3	d1_4	d1_5	d1_6	d1_7	d1_8	d1_9	d1_10	d1_11	d1_12	d1_13	d1_14	d1_15	d1_16	d1_17	d1_18	d1_19	d1_20	d1_21	d1_22	Mittelwert
Etablierte	5.90	5.70	5.81	5.62	5.72	5.42	5.50	5.47	5.23	5.61	5.62	5.82	5.73	5.74	5.45	5.47	5.22	5.72	5.53	4.43	4.70	5.26	5.48
Postmaterielle	5.82	5.73	5.77	5.29	5.52	5.33	5.14	5.31	5.13	5.46	5.35	5.80	5.65	5.25	5.14	5.01	4.40	5.24	4.92	4.13	4.36	4.81	5.21
Moderne Performer	5.83	5.29	5.79	4.92	5.04	4.92	4.79	4.88	4.71	5.42	5.08	5.75	5.50	5.25	4.88	4.88	3.58	4.71	5.00	3.38	3.96	4.25	4.90
Konservative	5.76	5.67	5.76	5.38	5.61	5.23	5.15	5.33	5.03	5.39	5.39	5.70	5.65	5.50	5.42	5.14	4.58	5.28	4.97	4.22	4.36	4.84	5.24
Traditionsverwurzelte	5.78	5.58	5.79	5.26	5.40	5.13	4.92	5.03	4.88	5.38	5.40	5.67	5.56	5.34	4.80	5.18	4.57	5.34	5.10	4.05	4.25	4.89	5.15
DDR-Nostalgische	5.70	5.57	5.36	4.14	5.75	4.50	4.57	5.25	5.00	5.00	5.00	5.82	5.80	5.25	5.25	5.38	4.00	5.00	3.88	3.50	3.14	4.00	4.86
Bürgerliche Mitte	5.81	5.60	5.76	5.32	5.56	5.10	5.01	5.19	4.89	5.50	5.44	5.76	5.64	5.29	5.45	5.31	4.69	5.61	5.40	4.20	4.37	5.05	5.27
Konsum-Materialisten	5.79	5.42	5.69	5.10	5.25	4.88	4.83	4.93	4.79	5.33	5.12	5.59	5.45	5.24	5.15	5.17	4.29	5.07	4.83	3.80	4.20	4.54	5.02
Hedonisten	5.29	5.29	5.21	4.57	4.93	4.36	4.64	4.31	4.14	4.29	4.50	4.86	4.79	4.64	4.29	4.43	4.00	4.93	4.36	4.00	3.86	4.36	4.55
Experimentalisten	5.74	5.51	5.62	5.29	5.41	5.21	5.10	5.42	5.24	5.51	5.30	5.61	5.43	4.97	5.11	4.94	4.41	5.17	5.10	3.89	4.42	4.79	5.15
Insgesamt	5.78	5.59	5.72	5.24	5.45	5.15	5.04	5.20	5.00	5.41	5.32	5.70	5.57	5.26	5.15	5.10	4.46	5.27	5.04	4.04	4.31	4.80	5.16

Tabelle A5: Zukünftige Bewertung der Ökosystemdienstleistungen

Milieu Mittelwert	e1_1	e1_2	e1_3	e1_4	e1_5	e1_6	e1_7	e1_8	e1_9	e1_10	e1_11	e1_12	e1_13	e1_14	e1_15	e1_16	e1_17	e1_18	e1_19	e1_20	e1_21	e1_22	Mittelwert
Etablierte	5.69	5.61	5.75	5.61	5.47	5.45	5.33	5.17	5.17	5.53	5.45	5.69	5.60	5.55	5.55	5.41	5.00	5.27	5.32	4.27	4.52	4.79	5.33
Postmaterielle	5.55	5.62	5.72	5.53	5.57	5.42	5.03	5.14	5.01	5.32	5.24	5.57	5.42	4.97	5.08	4.72	4.05	4.74	4.50	3.66	3.91	4.42	5.01
Moderne Performer	5.50	5.33	5.50	5.17	5.42	4.96	4.46	4.42	4.21	5.08	4.79	5.42	5.42	4.83	4.63	4.13	3.00	3.75	4.17	2.92	3.04	4.29	4.56
Konservative	5.51	5.30	5.64	5.51	5.40	5.31	5.09	5.26	5.06	5.29	5.22	5.50	5.49	5.14	5.37	5.03	4.38	4.89	4.71	4.00	3.94	4.50	5.07
Traditionsverwurzelte	5.53	5.48	5.47	5.37	5.31	5.12	4.93	5.00	4.89	5.30	5.27	5.57	5.43	5.02	4.80	4.93	4.09	4.84	4.70	3.68	3.82	4.54	4.96
DDR-Nostalgische	6.00	6.00	5.88	5.57	5.86	5.17	5.00	5.00	4.40	5.40	5.67	6.00	6.00	5.40	5.00	4.80	4.20	4.20	4.20	3.40	2.75	4.20	5.00
Bürgerliche Mitte	5.63	5.47	5.68	5.50	5.53	5.32	5.08	5.30	4.96	5.41	5.45	5.64	5.58	5.17	5.27	5.01	4.28	5.18	5.01	3.76	4.04	4.69	5.14
Konsum-Materialisten	5.41	5.28	5.47	5.25	5.30	4.90	4.75	4.81	4.72	5.00	4.98	5.26	5.34	5.05	4.95	4.81	3.86	4.66	4.14	3.38	3.81	4.26	4.79
Experimentalisten	5.54	5.62	5.59	5.54	5.46	5.33	5.13	5.25	5.19	5.32	5.16	5.53	5.36	4.93	4.94	4.72	4.16	4.71	4.65	3.75	3.94	4.40	5.01
Hedonisten	5.08	5.15	5.33	5.38	5.33	5.00	4.92	4.77	4.50	4.77	4.77	5.15	5.31	5.17	4.75	5.00	4.31	5.23	4.92	4.62	4.00	4.69	4.92
Insgesamt	5.54	5.50	5.62	5.46	5.47	5.26	5.00	5.09	4.94	5.28	5.22	5.53	5.44	5.06	5.06	4.84	4.12	4.80	4.63	3.70	3.90	4.48	5.00

4. Daten zur Berechnung der Szenarien-Analyse

Tabelle A6: Business-As-Usual Szenario

				Produktion [t]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	976638	1230379	166480	24300	1305882	1075108
2005	976638	1230379	166480	24300	1305882	1075108
2010	976638	1230379	166480	24300	1305882	1075108
2015	976638	1230379	166480	24300	1305882	1075108
2020	976638	1230379	166480	24300	1305882	1075108
2025	976638	1230379	166480	24300	1305882	1075108
2030	976638	1230379	166480	24300	1305882	1075108
				Ertrag [kg/ha]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	5345	48270	3252	3660	47187	7511
2005	5345	48270	3252	3660	47187	7511
2010	5345	48270	3252	3660	47187	7511
2015	5345	48270	3252	3660	47187	7511
2020	5345	48270	3252	3660	47187	7511
2025	5345	48270	3252	3660	47187	7511
2030	5345	48270	3252	3660	47187	7511

 Tabelle A7: Bioenergieszenario

				Produktion [t]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	976638	1230379	166480	24300	1305882	1075108
2005	1006357	1280549	187769	24300	1366505	1105356.83
2010	1036076	1330719	209057	24300	1427128	1135605.67
2015	1065796	1380889	230345	24300	1487751	1165854.5
2020	1095515	1431059	251634	24300	1548374	1196103.33
2025	1125235	1481229	272922	24300	1608998	1226352.17
2030	1154954	1531399	294211	24300	1669621	1256601
				Ertrag [kg/ha]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	5345	48270	3252	3660	47187	7511
2005	5345	48270	3252	3660	47187	7511
2010	5345	48270	3252	3660	47187	7511
2015	5345	48270	3252	3660	47187	7511
2020	5345	48270	3252	3660	47187	7511
2025	5345	48270	3252	3660	47187	7511
2030	5345	48270	3252	3660	47187	7511

Tabelle A8: Ökolandbauszenario

				Produktion [t]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	976638	1230379	166480	24300	1305882	1075108
2005	976638	1230379	166480	24300	1305882	1075108
2010	976638	1230379	166480	24300	1305882	1075108
2015	976638	1230379	166480	24300	1305882	1075108
2020	976638	1230379	166480	24300	1305882	1075108
2025	976638	1230379	166480	24300	1305882	1075108
2030	976638	1230379	166480	24300	1305882	1075108
				Ertrag [kg/ha]		
Jahr	Getreide	Mais	Raps	Hülsenfrüchte	Kartoffeln und Rüben	Weizen
2000	5279	47836	3217	3634	46937	7389
2005	5256	47691	3205	3625	46854	7349
2010	5234	47546	3193	3616	46770	7308
2015	5212	47401	3182	3607	46687	7268
2020	5167	47112	3158	3590	46520	7187
2025	5123	46822	3135	3572	46354	7105
2030	5078	46532	3112	3555	46187	7024

5. Datengrundlage ÖSDL Modellierung

Tabelle A9: Übersicht Bodeneigenschaften: Quellen: Scheffer und Schachtschabel, IBS, LUNG

ID	Bodengruppe	Bodeneinheit	Ausgangsgestein	Maximum/ Minimum SOC [%]	Maximum/ Minimum Tonanteil [%]	Maximum/ Minimum pH Wert [-]	Maximum/ Minimum Bodendichte [g/cm³]
1	Böden aus lösslehmarmer Solifluktionsdecke	Rendzinen	Kalkstein, Mergel, Dolomit	5 - 10	50 - 70	5 - 7,5	0,8 - 1,0
2	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Ranker- Braunerden, Regosol- Braunerden	Gabbro, Diorit, Amphibolit, Melaphyr, Basalt	5 - 7,5	20 - 30	4 - 5,5	0,5 - 0,9
3	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Pelosole	Ton- und Schluffsteine und Arkosen, örtl. carbonathaltig	3 - 7,5	15 - 30	5,5 - 6,5	0,5 - 0,9
4	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Pseudogleye, vereinzelt Podsol- Braunerden	Tonschiefer, Grauwackenschiefer, Phyllit	3 - 10	20 - 40	4 - 5	0,5 - 1,1
5	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Braunerde- Pseudogleye	Granodiorit, Quarz- porphyr, Glimmer- und Quarzitschiefer, Gneis	3 - 7,5	15 - 30	4 - 5	0,5 - 0,9
6	Böden aus Laacher-See-Tephra bzw. aus bimsaschereicher Solifluktionsdecke	Lockerbraunerden	Trachytische Aschen	2 - 7	10 - 20	6 - 7	0,7 - 0,95
7	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Ranker- Braunerden	Grauwacken, Sand- steine, Konglomerate, Quarzite, Kieselschie- fer	1 - 5	22 - 29	4 - 5,5	0,5 -1,0
8	Böden aus Flugsand	Braunerden mit Bändern, Bänder- Parabraunerden	Dünensand, Terrassensand und -kies	1,5 - 3,5	10 - 20	3 -5	0,5 - 0,9
9	Böden aus fluviatilen Sedimenten	Braunerden mit Bändern, Bänder- Parabraunerden	Terrassensand und - kies	1,5 - 3,5	10 - 20	3 -5	0,5 - 0,8
10	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden	Schluff- und Tonstei- ne, Sandsteine	1,5 -3	10 - 20	3 - 5	0,5 - 0,9
11	Böden aus lösslehmarmer Solifluktionsdecke	Podsol- Braunerden, Pseudogley- Parabraunerden	Sandsteine	1,5 -3	7 -10	2 - 5	0,4 - 0,8
12	Böden aus Löss	Parabraunerden, Tschernoseme	Löss	3 - 5	15 - 50	5 - 7	0,8 - 1,3
13	Böden aus Löss	Parabraunerden	Lösslehm, Löss	3 - 5	20 - 50	5 - 7	1 - 1,3
14	Böden aus fluviatilen Sedimenten	Parabraunerden	carbonathaltiger Hochflutlehm	3 - 5	30 - 50	5 - 7	1 - 1,3
15	Böden aus lösslehmarmer Solifluktionsdecke	Fersiallite	Basalt, Basalttuff	0,5 - 1,5	0 - 10	3 - 5	1 - 1,4
16	Böden aus lösslehmhaltiger Solifluktionsdecke Pseudogley- Parabraunerde Pseudogleye		vorwiegend Lösslehm mit Gesteinsbeimen- gungen	1,5 -3	7 -10	3 -6	0,5 - 0,9
17	Böden aus lösslehmhaltiger Solifluktionsdecke	Pseudogleye mit Übergängen zu Stagnogleyen	Lösslehm über dichtem Untergrund	7,5 - 15	20 - 60	3 - 6	0,7 - 1,3

18	Böden aus fluviatilen Sedimenten	Vega, Auengleye	Auenlehm	2 - 3,25	40 - 50	4 - 4,5	1,1 - 1,3
10				2 - 3,23	40 - 30	4 - 4,5	1,1 - 1,3
19	Böden aus organogenen Substraten	Niedermoore, Hochmoore	Verschiedene Torfar- ten	15 - 50	50 - 70	4 - 7,5	1,2 - 1,5
20	Böden aus Löss	Pararendzinen	Löss	3 - 5	20 - 50	5 - 7	0,7 - 0,8
21	Böden aus Flugsand	Pararendzinen, Braunerden mit Bändern	carbonathaltiger Dünensand	1 - 3	20 - 30	5 - 7	0,7 - 1,2
22	Böden aus lösslehmreicher Solifluktionsdecke	Parabraunerden und Pseudogleye	Lösslehm, örtl. mit Gesteinsbeimengungen	3,5 - 7,5	30 -60	5 - 7	0,7 - 1,3
23	Böden aus lösslehmarmer Solifluktionsdecke	Rendzinen, Braunerden, Pelosole	Kalkstein, Mergel, Dolomit, Ton- und Schluffsteine und Arkosen	1,5 - 9	20 - 70	4 - 6	0,6 - 1,0
24	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Pelosole, Rendzinen	Ton- und Schluffsteine, Arkosen, Kalkstein, Mergel, Dolomit	1,5 - 7,5	20 - 70	4 - 6	0,6 - 1,0
25	Böden aus Löss	Tschernosem- Parabraunerden, Parabraunerden	Löss	1 - 3,5	15 - 50	5 - 7	0,8 - 1,3
26	Böden aus lösslehmreicher Solifluktionsdecke	Pseudogley- Parabraunerden, Pseudogleye, Parabraunerden	Lösslehm mit Ge- steinsbeimengungen	3,5 - 7,5	30 -60	5 - 6	0,7 - 1,3
27	Böden aus Löss	Parabraunerden, örtl. Pseudogley- Parabraunerden und Tscherno- sem- Parabraunerden	Löss	0,5 - 1	10 - 15	4,5 - 6	0,7 - 1,3
28	Böden aus lösslehmhaltiger Solifluktionsdecke	Pseudogley- Parabraunerden, Pseudogleye, Braunerden	Lösslehm, Basalt	0,5 - 1	10 - 15	4,5 - 6	0,7 - 1,3
29	Böden aus lösslehmhaltiger Solifluktionsdecke	Braunerden	Basalt, Lösslehm	1,5 - 3	10 - 20	3 - 5	0,3 - 0,7
30	Böden aus lösslehmhaltiger Solifluktionsdecke	Braunerden, Parabraunerden	Basalt, Lösslehm, Löss	1 - 3	20 - 30	5 - 7	0,7 - 1,2
31	Böden aus lösslehmreicher Solifluktionsdecke	Parabraunerden	Lösslehm, Löss, Ton- und Schluffsteine und Arkosen, Kalkstein oder Mergel	2 - 3,5	30 - 60	5 - 7	1 - 1,3
32	Böden aus lösslehmreicher Solifluktionsdecke	Parabraunerden, Braunerden und Podsol- Braunerden	Lösslehm, Löss, Schluff- und Tonstei- ne, Sandsteine	3 - 5	15 - 25	5 - 7	0,7 - 1,2
33	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Pelosole, Podsol- Braunerden	Sandsteine, Konglo- merate, Arkosen, Tonsteine, örtl. carbonathaltig	1,5 - 7	5 - 20	3,5 - 4,5	0,7 - 1,2
34	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden, Pseudogley- Braunerden und Pelosole	Sandsteine und Arkosen, Tonsteine, örtl. carbonathaltig	1,5 -3	10 - 20	3 - 5	0,3 - 0,8
42	Böden aus fluviatilen Sedimenten	Tschernoseme	carbonathaltiger Hochflutlehm	1 - 3	15 - 20	5 - 7	0,8 - 1
43	Böden aus lösslehmarmer Solifluktionsdecke	Braunerden	Schalstein, Diabas	1,5 - 3	10 - 20	3 - 5	0,5 - 0,9
46	Böden aus lösslehmarmer Solifluktionsdecke	Braunerde- Podsole, Podsole	Quarzite, Sandsteine	1,5 - 7	3 - 20	2 - 5	0,6 - 1

Tabelle A10: Daten zur Berechnung der Kohlenstoffspeicherung im Boden [Mg/ha]

Mischwald	d) und und 1	0% Grün	land (Full	er & Gaston 2009)
C_above	C_below	C_soil	C_dead	
7,15	2,00	16,73	1,87	
	,			
C_above	C_below	C_soil	C_dead	
0,00	0,00	0,00	0,00	
C_above	C_below	C_soil	C_dead	Quelle
0,00		72,80	0,00	HLUG 2008
		59,50		Gerzabek 2005
5,37	1,93			Balesdent 1992
0,00				IPCC 2006
		90,40		Leifeld 2005
		59,14		Arrouays 2001
1,13	0,41		0,74	Schröder 1919
4,74	1,71			Reinhold 2008
			0,25	Hülsbergen
		73,46		John 2005
2.25	1.35		0,33	Mittelwert
		conventio	nell (Troe:	gel 2008)
				Gattinger 2012
	,	,	0.3	Hülsbergen 2007
2,08	1,25	71,94		, , , , , , , , , , , , , , , , , , , ,
C_above	C_below	C_soil	C_dead	Quelle
7,79	9,59			Boddy 2007
5,74	22,97	110,08		White 2000
0,45	7,79	96,60	0,28	Schuman 1999
		61,50		FAO 2010b
0,80	3,20	114,00		Jandl 2009
		72,87		Noellert 2004
		100,00		Gerzabek 2005
		69,67		Frank 2002
		79,55		John 2005
·		77.60		Leifeld 2005
		77,60		Belleta 2005
1,40	5,60	//,60		WBGU 1998
	5,60 9,83		0,28	
3,24	9,83	86,87	0,28	WBGU 1998
	9,83		0,28	WBGU 1998
	C_above 7,15 C_above 0,00 C_above 0,00 5,37 0,00 1,13 4,74 2,25 er Ackerba erbau 30% v 1,57 2,08 C_above 7,79 5,74 0,45	C_above C_below 7,15 2,00 C_above C_below 0,00 0,00 C_above C_below 0,00 0,00 5,37 1,93 0,00 0,00 1,13 0,41 4,74 1,71 2,25 1,35 er Ackerbau arbau 30% weniger als length 1,57 0,94 2,08 1,25 C_above C_below 7,79 9,59 5,74 22,97 0,45 7,79	C_above C_below C_soil 7,15 2,00 16,73 C_above C_below C_soil 0,00 0,00 0,00 C_above C_below C_soil 0,00 72,80 59,50 5,37 1,93 0,00 0,00 90,40 59,14 1,13 0,41 4,74 4,74 1,71 73,46 2,25 1,35 71,06 er Ackerbau rbau 30% weniger als konvention 1,57 0,94 74,56 2,08 1,25 71,94 74,56 74,56 2,08 1,25 71,94 72,87 74,56 0,45 7,79 96,60 61,50 61,50 0,80 3,20 114,00 72,87 100,00 69,67 69,67	7,15 2,00 16,73 1,87 C_above C_below C_soil C_dead 0,00 0,00 0,00 0,00 C_above C_below C_soil C_dead 0,00 72,80 0,00 59,50 59,50 5,37 1,93 0,00 90,40 59,14 1,13 0,41 0,74 4,74 1,71 0,25 73,46 2,25 1,35 71,06 0,33 er Ackerbau orbau 30% weniger als konventionell (Troe) 0,3 0,3 2,08 1,25 71,94 0,25 C_above C_below C_soil C_dead 7,79 9,59 0,28 5,74 22,97 110,08 0,45 7,79 96,60 0,28 61,50 0,80 3,20 114,00 72,87 100,00 0 69,67 0 0

22,79	3,09	9,40	87,53	0,21	
Wald					
	und 56% a	us Laubwal	d = Miscl	nwald* (H	essen-Forst 2010)
C_gesamt	C_above	C_below	C_soil	C_dead	Quelle
155,00		31,98			Dieter 2002
120,00	95,24	24,76			Dunger 2009
114,00	90,48	23,52	68,00		Oehmichen 2011
			93,60	9,00	HLUG 2008
43,90	34,84	9,06	112,90	20,10	Paul 2009
44,80	35,56	9,24	96,40	20,50	FAO 2010a
			91,00		Wördehoff 2011
					Schupert 2010
32,00	25,40	6,60	90,00	24,00	WBGU 1998
69,00	54,76	14,24	90,70	19,30	Schröder 2009
			62,03		John 2005
			106,03		Pregitzer 2004
80,00	62,02	17,98		13,00	Paul 2009
<u> </u>			117,54		Schrumpf 2011
133,10	103,18	29,92			Wördehoff 2011
120,00	93,02	26,98			Joosten 2004
	108,88	25,65			Luyssaert 2007
96,40	74,73	21,67	72,00	10,00	Wördehoff 2011
::	109,00	26,00	129,70	26,30	Wördehoff 2012a
60,00	48,78	11,22		22,00	Paul 2009
	,	, , ,	82,75	,	Schrumpf 2011
	45,91	9,23		5,77	Peichl 200
67,70	55,04	12,66	102,00	32,00	Wördehoff 2011
86,70	70,49	16,21			Wördehoff 2011
			129,20		Wördehoff 2012a
82,67	56,04	17,06	90,07	18,58	Mittelwert Wald
107,38	91,80	24,70	106,41	16,43	Mittelwert Laubwald
87,33	69,21	18,64	96,26	18,36	Mittelwert Nadelwald
98,55	81,86	22,04	101,94	17,28	*Mischwald
Sonderkult				,	
C_gesamt	C_above	C below	C_soil	C_dead	Quelle
			57,60		Gerzabek 2005
			41,90		Chiti 2012
			42,50		Rodrigues-Murillo
	3,00	0,78	84,10		Williams 2011
	, -	, -	68,52		Alvaro-Fuentes 2011
			27,25		Arrouays 2001
				0,00	IPCC 2006
	3,00	0,78	53,65	0,00	Mittelwert
Cowoocco	1 2,00	3,.0	1	1 -,	
Gewaesser	C_above	C_below	C soil	C_dead	
C_gesamt	C_above	C_below	C_soil	C_dead	

	0,00	0,00	0,00	0,00								
Sonstiges												
	25% Vegetation, davon 50% Mischwald und 50% Grünwald (HLUG 2008)											
C_gesamt	C_above	C_below	C_soil	C_dead								
	9,39	3,60	10,86	2,29								
Kurzumtri	eb											
C_gesamt	C_above	C_below	C_soil	C_dead	Quelle							
		6,00	69,00	2,00	Tönshoff 2010							
		1,00	58,00	2,00	Tönshoff 2010							
		6,00	92,00	2,00	Tönshoff 2010							
	30,87	4,27	35,22		Gielen 2005							
	66,00		87,00		Dewar 1992							
	13,00		65,00		Dewar 1992							
	43,26	9,27			Dowell 2009							
	24,50	5,50	35,00	5,00	Baum 2009							
	35,53	5,34	63,03	2,75	Mittelwert							

 Tabelle A11: Daten zur Berechnung der Stickstoffretention.

LUT	otk	Quelle	Wurze ltie fe	Ouelle	Export		Eintrag in k	g/ha/a			Ouelle	load_n	eff_n	Ouelle
LUI	eik	Quene	[mm]	Quene	[%]		Dünger	Tierbestand	Regen	Summe	Quene	kg/ha/a	[%]	Quene
Verkehr	0	Tallis 2012	1	Tallis 2012			0						0	Natural Capital Project 2013 ^b
verkem	0		1		0,36	Johnes 1995			20	20		7,20	0	
	650	Tallis 2012	1,5	Tallis 2012			170				DüV 2012		25	Natural Capital Project 2013 ^b
					0,36	Johnes 1995			25		Johnes 1995			•
			1,8	Allen 1998				44			Statistik-Hessen 2015			
Acker							176				Johnes 1995			
							137				Berthold 2015			
			_	Canadell 1996										
	650		1,8		0,13	Johnes 1995				205		35,65	25	
	650	Tallis 2012	1,7	Tallis 2012			170				DüV 2012		40	Natural Capital Project 2013 ^b
			2	Allen 1998	0,36	Johnes 1995			50		Johnes 1995			
Grünland							135				Johnes 1995			
			2,6	Canadell 1996				44			Statistik-Hessen 2015			
							77				Berthold 2015			
	650		2,1		0,05	Johnes 1995				171,33333		26,57	40	
Laubwald, Nadelwald,									20	13	Johnes 1995			
Mischwald	1	Tallis 2012	7	Canadell 1996			0				Hessen-Forst 2008		80	Natural Capital Project 2013 ^b
11215 CII WALL	1		7		0,36	Johnes 1995				13		13,00	80	
								0						
Sonderkultur	700	Tallis 2012	2	Allen			170		22,5		DüV 2012		35	Natural Capital Project 2013 ^b
	700		2		0,245	Johnes 1995				85		28,93	35	
	650	Tallis 2012	1,8	s. Acker				60	4		Johnes 1995			
					0,36	Johnes 1995		90	34		Dittman 2014		30	Dittman 2014
											Statistik-Hessen 2015			
Ökologischer Ackerbau							4			123	Berthold 2015	22,83		
	650	Tallis 2012	2,1	s. Grünland	0,36	Johnes 1995		80	50		Hege 2003		65	Hege 2003
Ökologisches Grünland							4			84	Berthold 2015	22,20		
	700	Tallis 2012	2	s. Sonderkulturen			10				Ecovin 2010		35	Natural Capital Project 2013 ^b
							30	30			Schubert (2014)			
					0,36	Johnes 1995			68					
ökologische Sonderkulturen	700		2							50)	36,73	40	
Gewichtung zukünftiger Anteil:							, ,							
Acker Öko												32,445		zukünftiger Anteil 25%
Grünland Öko												25,25666667		zukünftiger Anteil 25%
Sonderkultur Öko												32,71275	35	zukünftiger Anteil 25%

6. Simulationsergebnisse

Tabelle A12: Berechnung der Ernteerträge für Raps bis 2100.

	2000	2050ECLM	2100ECLM	2050HCLM	2100HCLM	2050REMO	2100REMO	2050Wettreg	2100Wettreg	Änderung %	Änderung %
Name	[t/ha]	Änderung %	Änderung %	Gesamt 2050	Gesamt 2100						
Darmstadt	4,199	9%	9%	10%	4%	20%	23%	23%	25%	15%	15%
Frankfurt am Main	4,290	8%	10%	8%	2%	9%	14%	-17%	-10%	2%	4%
Offenbach am Main	3,941	10%	13%	0%	-3%	10%	14%	25%	33%	11%	14%
Wiesbaden	3,963	7%	12%	9%	-3%	11%	22%	-21%	-19%	2%	3%
Bergstraße	3,818	12%	14%	10%	7%	15%	21%	34%	39%	18%	20%
Darmstadt-Dieburg	4,280	9%	11%	11%	8%	16%	20%	18%	22%	13%	16%
Groß-Gerau	3,003	11%	15%	14%	3%	33%	44%	61%	69%	30%	33%
Hochtaunuskreis	4,388	4%	9%	10%	0%	5%	9%	-62%	-61%	-11%	-11%
Main-Kinzig-Kreis	3,800	20%	27%	21%	26%	20%	28%	18%	29%	20%	28%
Main-Taunus-Kreis	4,465	7%	9%	11%	5%	8%	13%	-28%	-22%	0%	1%
Odenwaldkreis	4,549	12%	16%	14%	16%	12%	17%	11%	16%	12%	16%
Offenbach	4,134	10%	13%	8%	6%	13%	17%	19%	26%	12%	15%
Rheingau-Taunus-Kreis	3,558	7%	12%	1%	-17%	9%	20%	-60%	-60%	-11%	-11%
Wetteraukreis	4,054	12%	17%	11%	9%	9%	14%	-13%	-19%	5%	5%
Gießen	3,982	16%	23%	18%	16%	16%	21%	2%	-7%	13%	13%
Lahn-Dill-Kreis	3,816	19%	28%	37%	32%	34%	36%	17%	1%	27%	24%
Limburg-Weilburg	3,495	13%	26%	35%	27%	35%	42%	-15%	-5%	17%	23%
Marburg-Biedenkopf	3,662	27%	35%	36%	35%	34%	40%	28%	23%	31%	33%
Vogelsbergkreis	3,575	23%	32%	34%	38%	30%	38%	21%	21%	27%	32%
Kassel	3,276	25%	33%	32%	27%	32%	42%	45%	58%	34%	40%
Fulda	3,511	30%	41%	35%	42%	32%	42%	31%	42%	32%	42%
Hersfeld-Rotenburg	3,656	23%	33%	23%	28%	24%	34%	29%	41%	25%	34%
Landkreis Kassel	3,507	25%	34%	26%	24%	29%	37%	25%	38%	26%	33%
Schwalm-Eder-Kreis	3,222	26%	37%	37%	40%	37%	48%	46%	48%	37%	43%
Waldeck-Frankenberg	3,558	36%	47%	45%	45%	39%	47%	31%	38%	38%	44%
Werra-Meißner-Kreis	3,698	22%	30%	27%	29%	26%	34%	28%	40%	26%	33%
Gesamt	3,823	16%	23%	20%	17%	21%	28%	11%	16%	17%	21%

Tabelle A13: Berechnung der Ernteerträge für Kartoffeln bis 2100

	2000	2050ECLM	2100ECLM	2050HCLM	2100HCLM	2050REMO	2100REMO	2050Wettreg	2100Wettreg	Änderung %	Änderung %
Name	[t/ha]	Änderung in %		Gesamt 2100							
Darmstadt	40,628	-7%	-13%	-15%	-34%	24%	13%	-47%	-72%	-11%	-27%
Frankfurt am Main	33,628	-13%	-10%	-39%	-42%	9%	0%	-43%	-68%	-21%	-30%
Offenbach am Main	35,086	-7%	-18%	-33%	-54%	-6%	-19%	-16%	-47%	-16%	-34%
Wiesbaden	29,631	3%	30%	-39%	-39%	1%	5%	-55%	-79%	-23%	-21%
Bergstraße	39,543	5%	17%	25%	10%	33%	36%	38%	24%	25%	22%
Darmstadt-Dieburg	41,983	-7%	-14%	-8%	-23%	24%	13%	-34%	-62%	-6%	-22%
Groß-Gerau	17,507	-13%	-21%	-14%	-21%	98%	79%	-20%	-60%	13%	-5%
Hochtaunuskreis	33,143	-19%	1%	-5%	-10%	2%	4%	zu niedrig	zu niedrig	-7%	-2%
Main-Kinzig-Kreis	39,177	16%	26%	19%	16%	28%	32%	27%	12%	22%	21%
Main-Taunus-Kreis	32,899	-16%	-6%	-39%	-35%	18%	11%	-57%	-79%	-24%	-27%
Odenwaldkreis	51,904	12%	18%	15%	13%	20%	24%	6%	-11%	13%	11%
Offenbach	33,355	-10%	-21%	-28%	-38%	23%	4%	-34%	-64%	-12%	-30%
Rheingau-Taunus-Kreis	28,470	14%	39%	-49%	-50%	-13%	-4%	zu niedrig	zu niedrig	-16%	-5%
Wetteraukreis	34,141	4%	8%	6%	3%	14%	9%	65%	2%	22%	5%
Gießen	30,827	11%	18%	2%	12%	24%	23%	11%	-30%	12%	6%
Lahn-Dill-Kreis	30,935	13%	36%	51%	60%	55%	63%	71%	84%	47%	61%
Limburg-Weilburg	30,003	3%	36%	2%	11%	39%	50%	26%	50%	17%	37%
Marburg-Biedenkopf	30,861	31%	48%	17%	25%	42%	50%	30%	-8%	30%	29%
Vogelsbergkreis	32,529	33%	45%	40%	46%	44%	50%	36%	0%	38%	35%
Kassel	35,674	30%	39%	-7%	-13%	12%	18%	27%	-39%	15%	1%
Fulda	35,147	29%	50%	41%	46%	44%	59%	34%	7%	37%	40%
Hersfeld-Rotenburg	32,687	25%	31%	14%	10%	39%	44%	10%	-54%	22%	8%
Landkreis Kassel	30,957	28%	39%	3%	-2%	40%	47%	43%	-24%	28%	15%
Schwalm-Eder-Kreis	29,514	37%	50%	14%	12%	36%	47%	24%	-41%	28%	17%
Waldeck-Frankenberg	29,477	32%	64%	32%	42%	58%	76%	48%	16%	43%	49%
Werra-Meißner-Kreis	31,320	25%	26%	26%	18%	52%	59%	31%	-41%	34%	16%
Gesamt	33,501	10%	20%	1%	-1%	29%	30%	9%	-24%	12%	7%

Tabelle A14: Berechnung der Ernteerträge für Silagemais bis 2100

	2000	2050ECLM	2100ECLM	2050HCLM	2100HCLM	2050REMO	2100REMO	2050Wettreg	2100Wettreg	Änderung %	Änderung %
Name	[t/ha]	Änderung in %	Gesamt 2050	Gesamt 2100							
Darmstadt	47,951	-6%	-9%	-7%	-7%	8%	6%	1%	-11%	-1%	-5%
Frankfurt am Main	49,288	-7%	-9%	-13%	-11%	0%	-2%	-5%	-7%	-6%	-7%
Offenbach am Main	43,862	-2%	-5%	-22%	-15%	-1%	-2%	7%	9%	-4%	-3%
Wiesbaden	50,776	-14%	-14%	-15%	-15%	-1%	-1%	-9%	-13%	-10%	-11%
Bergstraße	43,805	-3%	-5%	-4%	-4%	1%	3%	16%	10%	2%	1%
Darmstadt-Dieburg	47,974	-4%	-6%	-4%	-3%	7%	7%	0%	-7%	0%	-2%
Groß-Gerau	34,892	-15%	-15%	-11%	-7%	10%	16%	33%	29%	4%	6%
Hochtaunuskreis	57,431	-13%	-14%	-14%	-15%	-4%	-11%	zu niedrig	zu niedrig	-10%	-13%
Main-Kinzig-Kreis	45,209	3%	6%	0%	5%	6%	9%	6%	9%	4%	7%
Main-Taunus-Kreis	52,002	-9%	-10%	-9%	-9%	0%	-2%	-11%	-13%	-7%	-9%
Odenwaldkreis	51,793	2%	3%	1%	3%	2%	4%	-2%	-6%	1%	1%
Offenbach	44,917	-3%	-5%	-10%	-6%	4%	3%	4%	4%	-1%	-1%
Rheingau-Taunus-Kreis	50,922	-16%	-17%	-24%	-25%	-3%	-4%	zu niedrig	zu niedrig	-14%	-15%
Wetteraukreis	49,568	-5%	-5%	-9%	-4%	-2%	-6%	-44%	-22%	-15%	-10%
Gießen	50,617	-5%	-4%	-7%	-4%	0%	-4%	-47%	-22%	-15%	-8%
Lahn-Dill-Kreis	55,203	-8%	-8%	-1%	-3%	7%	0%	-7%	-9%	-2%	-5%
Limburg-Weilburg	46,967	-10%	-5%	3%	5%	18%	13%	-6%	0%	1%	3%
Marburg-Biedenkopf	51,366	-2%	-2%	0%	0%	6%	2%	-15%	-9%	-3%	-2%
Vogelsbergkreis	45,098	0%	4%	8%	11%	9%	11%	-15%	-2%	1%	6%
Kassel	41,004	2%	4%	6%	4%	12%	16%	13%	17%	8%	10%
Fulda	46,640	3%	9%	4%	8%	5%	10%	1%	4%	3%	8%
Hersfeld-Rotenburg	43,958	3%	8%	2%	5%	6%	12%	3%	3%	4%	7%
Landkreis Kassel	43,306	3%	8%	2%	2%	12%	13%	8%	10%	6%	8%
Schwalm-Eder-Kreis	39,631	3%	7%	10%	13%	15%	21%	15%	17%	11%	15%
Waldeck-Frankenberg	54,350	0%	1%	1%	-2%	4%	0%	-13%	-19%	-2%	-5%
Werra-Meißner-Kreis	45,469	2%	5%	7%	6%	9%	12%	2%	3%	5%	7%
Gesamt	47,461	-4%	-3%	-4%	-3%	5%	5%	-3%	-1%	-2%	-1%

Tabelle A15: Berechnung der Ernteerträge für Weizen bis 2100.

	2000	2050ECLM	2100ECLM	2050HCLM	2100HCLM	2050REMO	2100REMO	2050Wettreg	2100Wettreg	Änderung %	Änderung %
Name	[t/ha]	Änderung in %	Gesamt 2050	Gesamt 2100							
Darmstadt	11,337	16%	17%	16%	0%	49%	49%	-12%	-1%	17%	16%
Frankfurt am Main	9,399	21%	34%	23%	12%	37%	52%	-29%	-22%	13%	19%
Offenbach am Main	10,876	26%	28%	-8%	-14%	18%	26%	-11%	10%	6%	13%
Wiesbaden	7,084	20%	47%	49%	32%	44%	76%	-2%	-29%	28%	31%
Bergstraße	10,632	18%	26%	45%	31%	46%	63%	83%	114%	48%	59%
Darmstadt-Dieburg	11,880	18%	19%	29%	10%	47%	50%	-8%	6%	21%	21%
Groß-Gerau	5,861	24%	37%	36%	28%	96%	122%	26%	39%	46%	56%
Hochtaunuskreis	7,979	17%	46%	66%	47%	30%	57%	-74%	-45%	10%	26%
Main-Kinzig-Kreis	9,118	26%	43%	77%	68%	42%	65%	40%	61%	46%	59%
Main-Taunus-Kreis	8,661	19%	37%	42%	28%	49%	68%	-34%	-28%	19%	26%
Odenwaldkreis	13,235	17%	27%	60%	43%	38%	55%	36%	59%	38%	46%
Offenbach	10,492	24%	26%	16%	4%	43%	46%	-15%	0%	17%	19%
Rheingau-Taunus-Kreis	5,991	19%	46%	46%	21%	27%	62%	zu gering	-59%	31%	17%
Wetteraukreis	8,893	26%	43%	64%	48%	36%	58%	-1%	32%	31%	45%
Gießen	7,669	26%	53%	76%	64%	39%	66%	-15%	13%	32%	49%
Lahn-Dill-Kreis	6,208	23%	60%	143%	120%	72%	112%	52%	87%	73%	95%
Limburg-Weilburg	6,138	24%	65%	126%	108%	75%	116%	52%	59%	69%	87%
Marburg-Biedenkopf	6,207	29%	63%	116%	96%	51%	88%	12%	46%	52%	73%
Vogelsbergkreis	7,213	28%	55%	127%	109%	52%	84%	28%	61%	59%	77%
Kassel	7,686	12%	37%	78%	48%	29%	73%	19%	36%	35%	49%
Fulda	6,380	30%	63%	145%	133%	56%	98%	54%	69%	71%	91%
Hersfeld-Rotenburg	7,097	28%	61%	100%	78%	47%	87%	7%	25%	45%	63%
Landkreis Kassel	6,761	31%	64%	103%	72%	54%	97%	16%	43%	51%	69%
Schwalm-Eder-Kreis	6,452	20%	56%	111%	86%	42%	86%	15%	38%	47%	67%
Waldeck-Frankenberg	5,257	36%	78%	158%	127%	53%	94%	29%	74%	69%	93%
Werra-Meißner-Kreis	6,880	33%	62%	124%	84%	66%	110%	21%	43%	61%	75%
Gesamt	8,130	23%	46%	76%	57%	48%	75%	12%	28%	40%	52%

7. Literatur zur Analyse der Kohlenstoffspeicherung und Nährstoffretention

Álvaro-Fuentes, J.; Easter, M.; Cantero-Martinez, C.; Paustian, K. (2011): Modelling soil organic carbon stocks and their changes in the northeast of Spain. European Journal of Soil Science 62, 685-695.

Allen, R. G.; Pereira, L. S.; Raes, D.; Smith, M. (1998): FAO Irrigation and Drainage Paper No. 65. Crop Evapotranspiration.

Arrouays, D.; Deslais, W.; Badeau, V. (2001): The carbon content of topsoil and its geographical distribution in France. Soil Use and Management 17, 7-11.

Balesdent, J.; Balabane, M. (1992): Maize root-derived soil organic carbon estimated by natural ¹³C abundance. Soil Biology & Biochemistry Vol. 24, No. 2, 97-101. Pergamon Press plc.

Baum, C.; Leinweber, P.; Weih, M.; Lamersdorf, N.; Dimitriou, I. (2009): Effects of short rotation coppice with willows and poplar on soil ecology. Landbauforschung – vTI. Agriculture and Forestry Research 3, (59), 183-196.

Berthold, G.(2015): Ausgewählte Controlling-Ergebnisse zur gewässerschonenden WRRL-Beratung in Hessen, Vortrag im Rahmen des Bund-Länder-Fachgesprächs Stickstoffbilanz, Mai 2015.

Boddy, E.; Hill, P. W.; Farrar, J.; Jones, D. L. (2007): Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biology & Biochemistry 39, 827-835. Elsevier Ltd.

Canadell, J.; Jackson, R. B.; Ehleringer, J. R.; Mooney, H. A.; Sala, O. E.; Schulze, E.-D. (1996): Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583-595. Springer-Verlag.

Chiti, T.; Gardin, L.; Perugini, L.; Quaratino, R.; Vaccari, F. P.; Miglietta, F.; Valentini, R. (2012): Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and Fertility of Soils 48, 9-17. Springer-Verlag.

Dewar, R. C.; Cannell, M. G. R. (1992): Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology 11, 49-71. Heron Publishing. Victoria, Canada.

Dieter, M.; Elsasser, P. (2002): Carbon Stocks and Carbon Stock Changes in the Tree Biomass of Germany's Forests. Forstw. Cbl. 121, 195-210. Blackwell Verlag, Berlin.

Dowell, R. C.; Gibbins, D.; Rhoads, J. L.; Pallardy, S. G. (2009): Biomass production physiology and soil carbon dynamics in short-rotation-grown Populus deltoides and P. deltoides x P. nigra hybrids. Forest Ecology and Management 257, 134-142. Elsevier B. V.

Dunger, K.; Stümer, W.; Oehmichen, K.; Riedel, T.; Bolte, A. (2009): Der Kohlenstoffspeicher Wald und seine Entwicklung. AFZ-Der Wald 20, 1072-1073.

Düngeverordnung (DüV) (2012): Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen. Düngeverordnung in der Fassung der Bekanntmachung vom 27. Februar 2007 (BGBl. I S. 221), die zuletzt durch Artikel 5 Absatz 36 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist.

Food and Agriculture Organization of the United Nations (FAO) (2010): Global Forest Resources Assessment 2010. Main report. FAO Forestry Paper 163. Rome.

Frank, A. B.; Liebig, M. A.; Hanson, J. D. (2002): Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology & Biochemistry 34, 1235-1241. Elsevier Science Ltd.

Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; El-Hage Scialabba, N.; Niggli, U. (2012): Enhanced top soil carbon stocks under organic farming *PNAS 2012* 109 (44) 18226-18231

Gerzabek, M. H.; Strebl, F.; Tulipan, M.; Schwarz, S. (2005): Quantification of organic carbon pools for Austria's agricultural soils using a soil information system. Canadian Journal of Soil Science 85, 491–498.

Gielen, B.; Calfapietra, C.; Lukac, M.; Wittig, V. E.; de Angelis, P.; Janssens, I. A.; Moscatelli, M. C.; Grego, S.; Cotrufo, M. F.; Godbold, D. L.; Hoosbeek, M. R.; Long, S. P.; Miglietta, F.; Polle, A.; Bernacchi, C. J.; Davey, P. A.; Ceulemans, R.; Scarascia-Mugnozza, G. E. (2005): Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO₂ enrichment. Tree Physiology 25, 1399-1408. Heron-Publishing. Victoria, Canada.

Hege, U. und Fischer, A. und Offenberger, K. (2003) Nährstoffsalden und Nitratgehalte des Sickerwassers in ökologisch und konventionell bewirtschafteter Ackerflächen. Tagungsband: Forschung für den ökologischen Landbau in Bayern, Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft 3/03. Bayerische Landesanstalt für Landwirtschaft (LfL), Freising.

Hessisches Landesamt für Umwelt und Geologie (HLUG) (2008): Untersuchung des Einflusses des Klimawandels auf die CO₂-Freisetzung aus Böden ausgewählter hessischer Dauerbeobachtungsflächen. Abschlussbericht. Wettenberg.

Hessisches Statistisches Landesamt (2015): Bodennutzung in den landwirtschaftlichen Betrieben Hessens, www.statistik-hessen.de

Johnes, P. J.(1996): Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: The export coefficient modelling approach. Journal of Hydrology 183, 323-349.

Nöllert, S (2004): Vorräte und Dynamik des Boden-Kohlenstoffs

in Grünlandflächen Thüringens, Dissertation, Friedrich-Schiller-Universität Jena

Hülsbergen, K.-J.; Küstermann, B. (2007) Ökologischer Landbau - Beitrag zum Klimaschutz. In: Wiesinger, Klaus (Hrsg.) *Angewandte Forschung und Beratung für den ökologischen Landbau in Bayern*, Bayerische Landesanstalt für Landwirtschaft (LfL), Freising, Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft, Nr. 3/2007, S. 9-21.

Intergovernmental Panel on Climate Change (IPCC) (2003): Good Practice Guidance for Land Use, Land-Use change and Forestry. PENMAN, J.; GYTARSKY, M.; HIRAISHI, T.; KRUG, T.; KRUGER, D.; PIPATTI, R.; BUENDIA, L.; MIWA, K.; NGARA, T.; TANABE, K.; WAGNER, F. (eds.). National Greenhouse Gas Inventories Programme. IGES. Japan.

Intergovernmental Panel on Climate Change (IPCC) (2006): Guidelines for National Greenhouse Gas Inventories. EGGLESTON, S.; BUENDIA, L.; MIWA, K.; NGARA, T.; TANABE, K. (eds.). National Greenhouse Gas Inventories Programme. IGES. Japan.

John, B.; Yamashita, T.; Ludwig, B.; Flessa, H. (2005): Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128, 63-79. Elsevier B. V.

Joosten, R.; Schumacher, J.; Wirth, C.; Schulte, A. (2004): Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189, 87-96. Elsevier B. V.

Landesbetrieb Hessen-Forst (Hrsg.) (2011): Nachhaltigkeitsbericht 2010. Kassel.

Leifeld, J.; Bassin, S.; Fuhrer, J. (2005): Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment 105, 255-266. Elsevier B. V.

Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A. D. et al. (2007): CO₂ balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13, 2509-2537. Blackwell Publishing Ltd.

Noellert, S. (2004): Vorräte und Dynamik des Boden-Kohlenstoffs in Grünlandfläche Thüringens. Dissertation, Friedrich-Schiller-Universität Jena.

Oehmichen, K.; Demant, B.; Dunger, K.; Grüneberg, E.; Hennig, P.; Kroiher, F.; Neubauer, M.; Polley, H.; Riedel, T.; Rock, J.; Schwitzgebel, F.; Stümer, W.; Wellbrock, N.; Ziche, D.; Bolte, A. (2011): Inventurstudie 2008 und Treibhausgasinventar Wald. Johann Heinrich von Thünen-Institut (vTI), Landbauforschung. Sonderheft 343

Paul, C.; Weber, M.; Mosandl, R. (2009): Kohlenstoffbindung junger Aufforstungsflächen. Karl Gayer Institut, Lehrstuhl für Wald der Technischen Universität München. Freising.

Peichl, M.; Arain, M. A. (2006): Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology 140, 51-63. Elsevier B. V.

Pregitzer, K. S.; Euskirchen, E. S. (2004): Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology 10, 2052-2077. Blackwell Publishing Ltd.

Reinhold, J. (2008): Humusreproduktionsleistung von Biogasgärresten aus der Ganzpflanzenvergärung von Mais. In: KEHRES, B.: H&K 2/08, 54ff.

Rodríguez-Murillo, J. C. (2001): Organic carbon content under different types of land use and soil in peninsular Spain. Biology and Fertility of Soils 33, 53-61. Springer-Verlag.

Schröder, H. (1919): Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften 7, Heft 2, 23-29.

Schröder, W.; Schmidt, G.; Pesch, R. (2009): Großräumige Regionalisierung der Kohlenstoffbindung in Wäldern Nordrhein-Westfalens. Umweltwissenschaften und Schadstoff-Forschung 21, 516-526. Springer-Verlag.

Schrumpf, M.; Schulze, E. D.; Kaiser, K.; Schumacher, J. (2011): How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discuss 8, 723-769. Copernicus Publications.

Schubert, W.; Rascher, B. (2014): Erdbeersortenversuch 2013 im ökologischen Anbau : Gute Erträge trotz ungünstiger Witterung. Bayerische Landesanstalt für Weinbau und Gartenbau

Schuman, G. E.; Reeder, J. D.; Manley, J. T.; Hart, R. H.; Manley, W. A. (1999): Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications 9, 65-71. Ecological Society of America.

Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Sharp, R. (2012): InVEST 2.4.4 User's Guide: Integrated Valuation of Environmental Services and Tradeoffs. A modeling suite developed by the Natural Capital Project to support environmental decision-making.

Tönshoff, C., Wachendorf, C., Stülpnagel, R., Jörgensen, R. (2010): Welche Bedeutung habe die C und N Vorräte des Bodens und der pflanzlichen Biomasse von Kurzumtriebsplantagen für die Dynamik der organischen Bodensubstanz nach dem Umbruch? Tagungsbeitrag zu: Workshop der Komissionen VI u. IV der DBG u. DGP. Online: http://eprints.dbges.de/512/1/Tagungsbeitrag_Muencheberg_2010.pdf, 05.04.2013.

White, R. P.; Murray, S.; Rohweder, M. (2000): Pilot Analysis of Global Ecosystems - Grassland Ecosystems. World Resources Institute.

Williams, J. N., Hollander, A. D., O'Geen, A. T., Thrupp, L. A., Hanifin, R., Steenwerth, K., McGourty, G., Jackson, L. E. (2011): Assessment of carbon in woody plants and soil across a vineyard-woodland landscape. Carbon Balance and Management 6, 11.

Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU) (Hrsg.) (1998): Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschritt oder Rücktritt für den globalen Umweltschutz? Sondergutachten.

Wördehoff, R.; Spellmann, H.; Evers, J.; Nagel, J. (2011): Kohlenstoffstudie Forst und Holz Niedersachsen. NORDWESTDEUTSCHE FORSTLICHE VERSUCHSANSTALT (Hrsg.). Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, Band 6. Universitätsverlag Göttingen.

Wördehoff, R.; Spellmann, H.; Evers, J.; Aydin, C. T.; Nagel, J. (2012): Kohlenstoffstudie Forst und Holz Schleswig-Holstein. NORDWESTDEUTSCHE FORSTLICHE VERSUCHSANSTALT (Hrsg.).

Zimmer, J.; Dittmann, B.: Nährstoffbilanzen im ökologischen Landbau unter Berücksichtigung unterschiedlicher Bewirtschaftungssysteme. 115. VDLUFA-Kongreß "Zukünftige Anforderungen an Forschung und Untersuchung für Landwirtschaft, Umwelt und Verbraucher" am 17.09.2003 in Saarbrücken.