Projekt BIENE

Sophie Charlotte Godow¹, Kaspar Bienefeld², **Frank-M. Chmielewski¹**¹Agrarklimatologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin
²Länderinstitut für Bienenkunde, Hohen Neuendorf e.V.

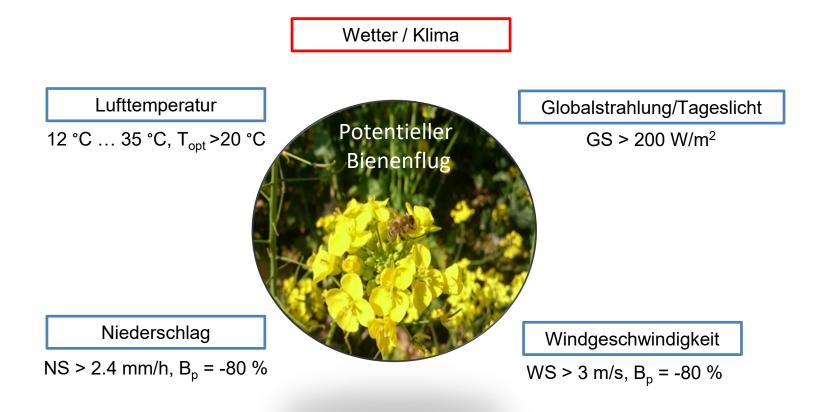
22. November 2021

Hintergrund

80 % der Nutz- und Wildpflanzen sind in D auf Bestäubung durch Insekten angewiesen. Der volkswirtschaftliche Wert der Honigbiene wird hier auf > 2 Mrd. Euro a-1geschätzt (Bestäubung). Bienen und andere Bestäuber sind jedoch heute mehr denn je gefährdet.

Einschränkung der Lebensräume

Parasiten/Krankheiten


Pflanzenschutzmittel (Herbizide, Insektizide)

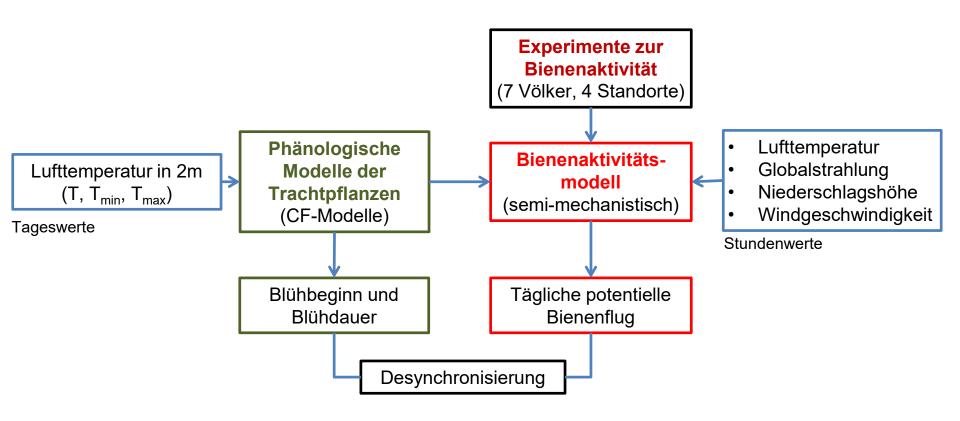
Nahrungsangebot/ Trachtverfügbarkeit Haltungsbedingungen

Wetter / Klima

Forschungsfrage

Welchen Einfluss haben Klimaänderungen auf den Flug der Honigbienen und damit auf die Bestäubung, besonders im Obstbau?

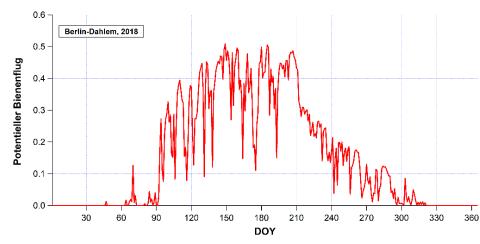
Arbeitsschwerpunkte


Paket 1: Bienenaktivitätsmodell und phänologische Modelle

- Weiterentwicklung und Validierung eines Bienenaktivitätsmodells (Friesland, 1998; Blümel und Chmielewski 2013)
- Entwicklung phänologischer Modelle für relevante Trachtpflanzen

Paket 2: Projektionen für die Zukunft

 Untersuchung zu möglichen Veränderungen von Phänologie und Bienenaktivität auf der Grundlage von Klimamodellrechnungen


Paket 1: Weiterentwicklung und Validierung des Bienenaktivitätsmodells

Bienenaktivitätsmodell

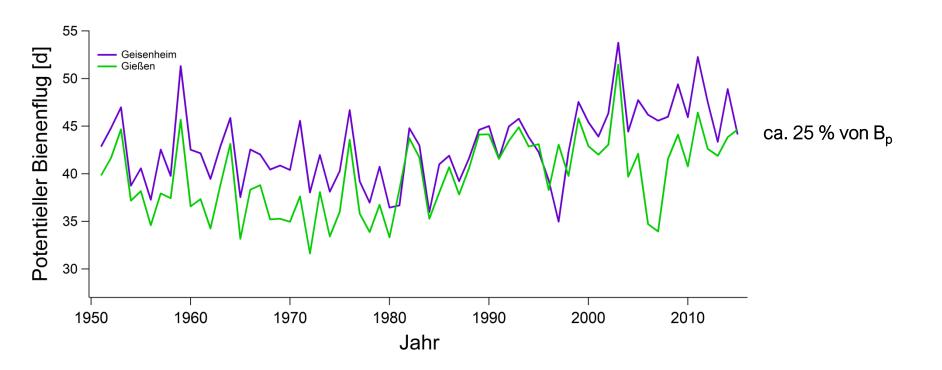
- Mittlere Flugintensität: $MittFlugInt = \frac{1}{24} \sum_{i=1}^{24} GesGew_i$.
- Wichtungsfaktoren: $GesGew_i = F_T(T_i) * F_V(V_i) * F_R(R_i) * F_G(G_i) * Fak_i * 0.98$
- Gewichtsfunktionen $F_k(x_i)$ werden mit einer Sigmoid-Funktion beschrieben

T = Lufttemperatur, V = Windgeschwindigkeit, R = Niederschlagshöhe, G = Globalstrahlung, Fak = Jahreszeitenfaktor zur Absenkung der Flugintensität im Winter, 0.98 = Normierungsfaktor

Potentieller Bienenflug, Bp [0 ...1]:

Mittlere Anzahl an Stunden ohne (0) bzw. mit schwacher, mäßiger und hoher Flugintensität.

Bp=1.00: 24 h mit perfekten Bedingungen


Bp=0.25: 6 h mit perfekten Bedingungen oder

12 h mit mittleren oder

24 h mit mäßigen Bedingungen.

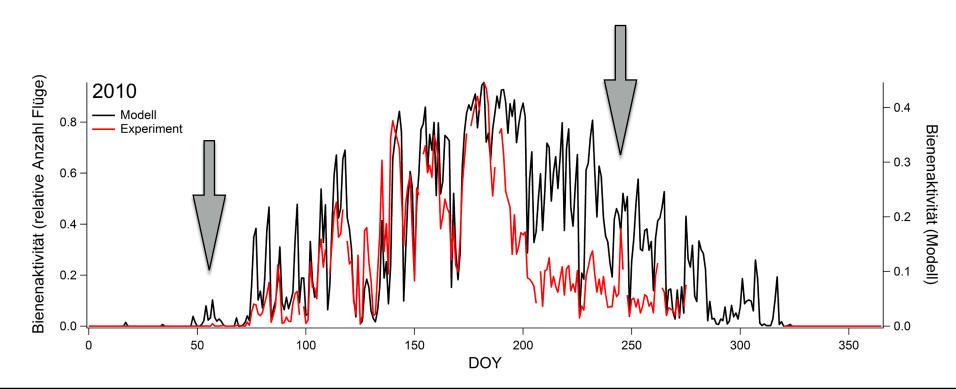
Berechnung des potentiellen Bienenfluges (B_P)

• Maximaler Jahreswert: B_p=182 d (4368 h), limitiert durch Tageslänge

Validierung des Modells

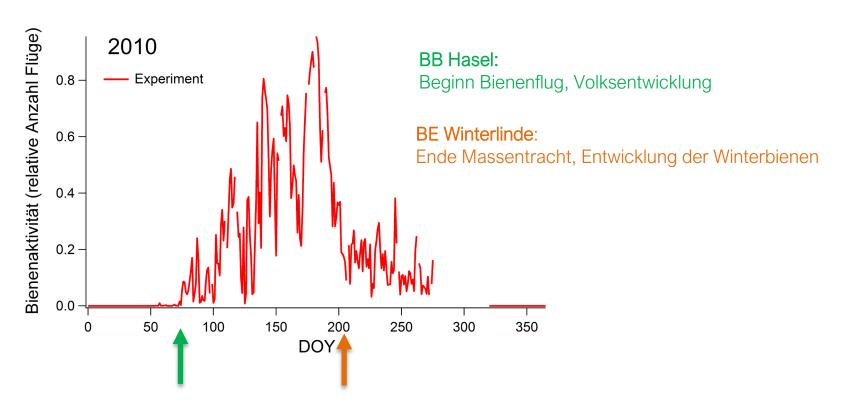
- Beobachtungsdaten zum Bienenflug des HOBOS-Projekt* (Universität Würzburg)
- Standort Würzburg: 1 Volk, 5 Jahre
- Standort Bad Schwartau: 1 Volk, 1 Jahr
- Geräte:
 - BeeScan (Lowland Electronics),
 - eigene Technik, jeweils Zählung per Lichtschranke an den Ein- und Ausfluglöchern

Foto: BeeScan in Berlin-Dahlem

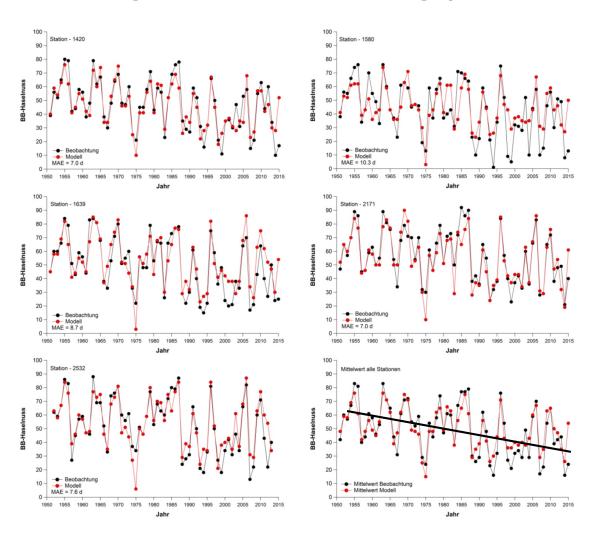

^{*}HOBOS (HOneyBee Online Studies), von Prof. Dr. Jürgen Tautz und Hartmut Vierle, 2006 bis 2019, Universität Würzburg

Validierung des Modells (Würzburg, 2010)

- im Modell verfrühte Peaks zu Jahresbeginn
- systematische Überschätzung der Bienenaktivität im Spätsommer und Herbst


Frage:

Ergibt sich eine Modellverbesserung durch die Einbeziehung der Volksentwicklung und Blühzeiten?




Kalibierung und Modellverbesserung

 Modellverbesserung durch Einbeziehen ausgewählter phänologischer Phasen: Blühbeginn der Hasel, Blühende der Winterlinde

Phänologische Modellierung (Beispiel BB Hasel)

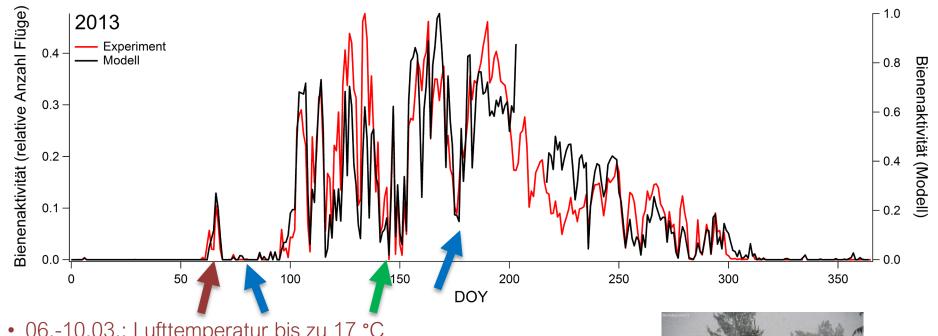
Modellansatz: CF-Modelle mit PTU's MAE: 7-10 d

Erweitertes Bienenaktivitätsmodell


- Mittlere Flugintensität: $MittFlugInt = \frac{1}{24} \sum_{i=1}^{24} GesGew_i$.
- Wichtungsfaktoren: $GesGew_i = F_T(T_i) * F_V(V_i) * F_R(R_i) * F_G(G_i) * Fak_i * 0.98$ $FakP_i$
- Gewichtsfunktionen $F_k(x_i)$ werden mit einer Sigmoid-Funktion beschrieben

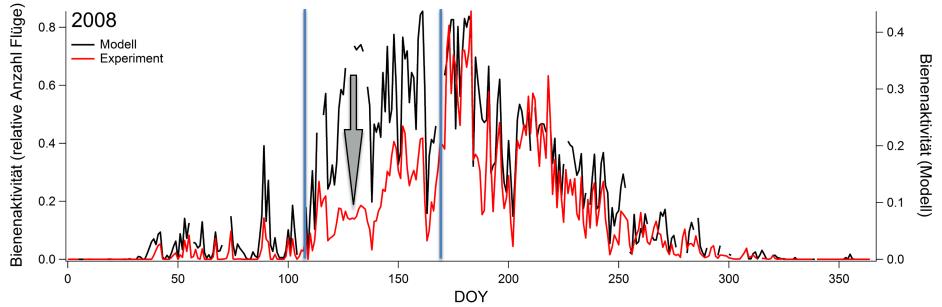
Phänologischer Faktor FakPi:

• reduziert Bienenaktivität vor Blühbeginn der Hasel (keine relevantenTrachtpflanzen) und nach Blühende der Winterlinde (verringerter Bienenflug aus Beobachtungen)


T = Lufttemperatur, V = Windgeschwindigkeit, R = Niederschlagshöhe, G = Globalstrahlung, Fak = Jahreszeitenfaktor zur Absenkung der Flugintensität im Winter, 0.98 = Normierungsfaktor

Validierung des Modells

Validierung des Modells (Würzburg 2013)


Witterungsbedingte Schwankungen werden vom Modell gut erfasst!

- 06.-10.03.: Lufttemperatur bis zu 17 °C
- nachfolgender Kälteeinbruch (kältester März seit Jahrzehnten)
- 26.05.: Niederschlag 14mm, maximale Lufttemperatur 9 °C
- 25.-26.06.: Kälteeinbruch, maximale Lufttemperatur 11 °C

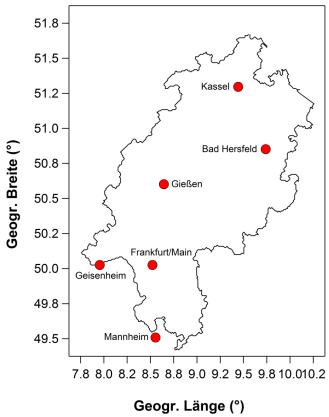
Validierung des Modells (Mayen 2008)

Menschliche Einflüsse werden vom Modell nicht berücksichtigt!

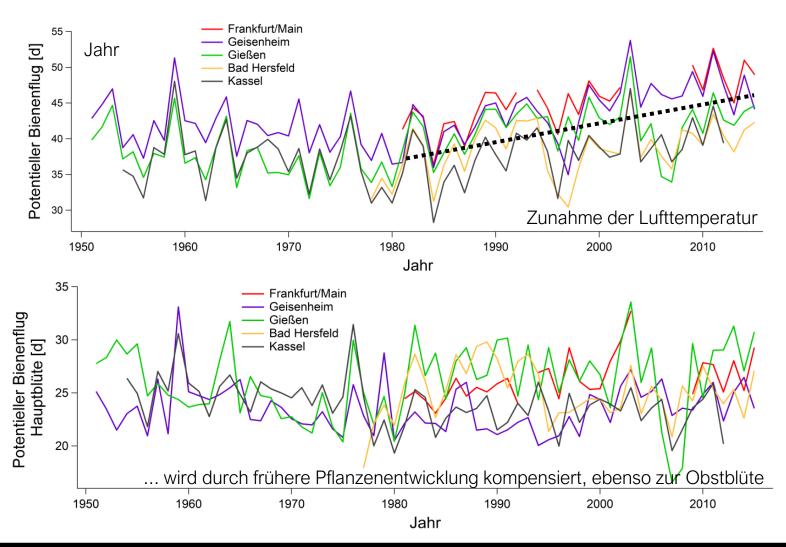
- Massives Bienensterben durch falsch gebeiztes Mais-Saatgut und Insektizide (Neonicotinoid: Clothianidin)
- Auswirkungen entlang des Rheintals von Baden-Würtemberg bis Rheinland-Pfalz sichtbar

Foto: Mayen 2008

Potentieller Bienenflug in Hessen, 1951-2015


Berechnung des potentiellen Bienenflugs an

6 Standorten und für 3 relevante Zeiträume


1. Dauer der Obstblüte
Beginn Kirschblüte (26/04) – Ende Apfelblüte (15/05)

2. Dauer der Hauptblüte Beginn Haselblüte (23/02) – Ende Blüte Winterlinde (22/07)

3. Ganzes Jahr

Potentieller Bienenflug in Hessen (1951-2015)

Paket 2: Projektionen für die Zukunft

Datengrundlage:

- Klimaprojektionsdaten von 3 GCMs: MPI-ESM, ICHEC-EC-EARTH, MOHC-HadGEM, jeweils in der Regionalisierung RCA4 (Rossby Center at SMHI Sweden, EURO-CORDEX¹)
- Berechnung für die Emissionsszenarien RCP 2.6 und RCP 8.5
- Räumliche Auflösung 0.11° (max. Flugradius der Bienen, 10 km)
- Jeweils 3h-Werte für Lufttemperatur, Globalstrahlung, Niederschlagshöhe und Windgeschwindigkeit für 6 Stationen und jeweils 9 Gitterzellen/Station

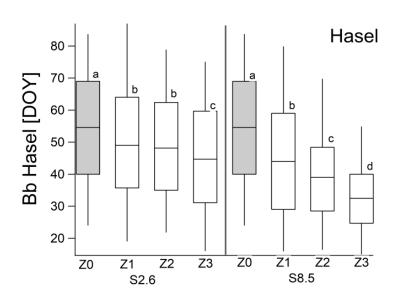
Einschränkungen:

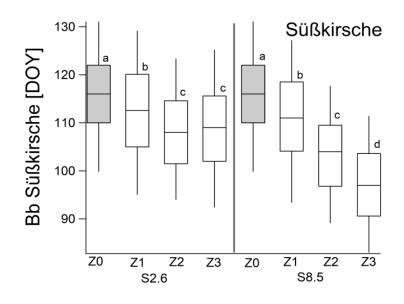
- kein vollständiges Ensemble des ReKliEs-Gesamtensembles
- GCMs decken das Änderungssignal der Temperatur annähernd ab (EC-EARTH ... HadGEM +)
- die gleiche Regionalisierung (RCA4) bedingt ein ähnliches Verhalten für Niederschlag und Wind

¹Coordinated Regional Downscaling Experiment

Klimawandel: Lufttemperatur

	tempo	Jahresmittel- temperatur (°C)		Mittlere Temperatur HB (°C)		Mittlere Temperatur OB (°C)	
RCP	2.6	8.5	2.6	8.5	2.6	8.5	
Z0: 1971 - 2000	8.3		10.5		10.6		
Z3: 2071 - 2100	9.6	12.2	10.8	11.5	10.5	10.8	
Δ (Z3 – Z0)	1.3 K***	3.9 K***	0.3 K***	1.0 K**	-0.1 K***	0.2 K***	

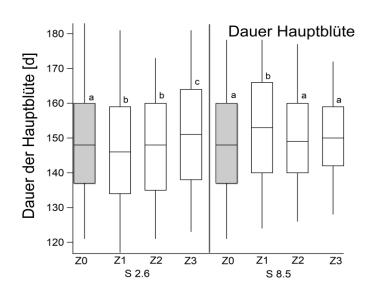

Signifikanz mit *P* < 1%, *Signifikanz mit *P* < 0.1%

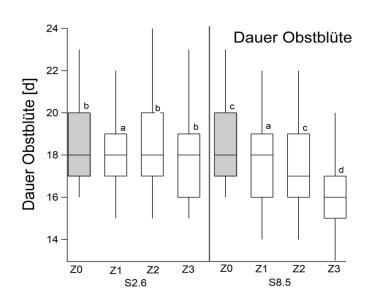

- starke Erhöhung der Jahresmitteltemperatur um 1.3 3.9 K
- leichte Erhöhung der mittleren Temperatur während der Hauptblüte (BB Hasel BE Winterlinde) um 0.3 - 1.0 K
- kaum eine Erhöhung der mittleren Temperatur während der Obstblüte (BB Süßkirsche BE Apfel),
 -0.1 +0.2 K

Klimawandel: weitere Witterungsparameter (RCP 8.5)

- signifikante Verringerung der Stunden mit GS > 200 Wm⁻² um 12 % (Hauptblüte) bis 33 % (Obstblüte) durch die Verfrühung der Zeiträume
- signifikante Erhöhung der Globalstrahlung vor allem im Spätsommer und Herbst,
 d.h. in der trachtfreien Zeit
- Verringerung der Stunden mit Windgeschwindigkeit > 3 m/s während der Hauptblüte (-11 %) und Obstblüte (-14 %), Zunahme vor allem im Winter
- keine belastbare Aussage über Veränderungen der Niederschlagsstunden möglich (geringe Ensemblegröße)

Veränderungen in der Phänologie der Trachtpflanzen


	BB Hasel (DOY) Beginn Hauptblüte		BB Süßkirsche (DOY) Beginn Obstblüte			
RCP	2.6	8.5	2.6	8.5		
Z0 (1971-2000)	54	54		116		
Z3 (2071-2100)	45	33	109	97		
Δ (Z3 – Z0)	-14 d***	-21 d***	-7 d***	-19 d***		

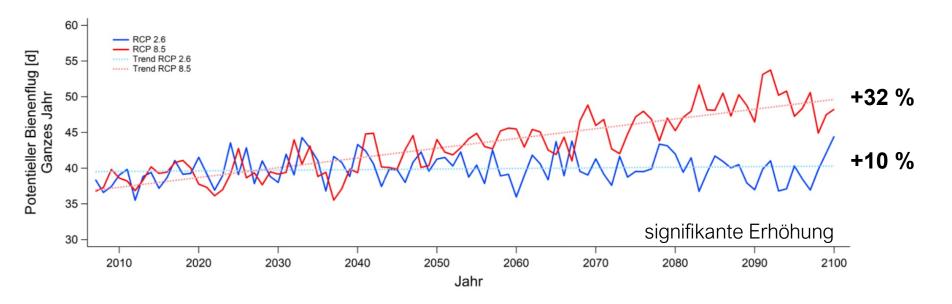

Z1: 2001-2040 Z2: 2041-2070

Z3: 2071-2100

^{***}Signifikanz mit P < 0.1 %

Veränderungen in der Dauer der Blühphasen

	Dauer HB (d) BB Hasel – BE Winterlinde		Dauer OB (d) BB Süßkirsche – BE Apfel		
RCP	2.6	8.5	2.6	8.5	
Z0 (1971-2000)	149		19		
Z3 (2071-2100)	151	150	18	16	
Δ (Z3 – Z0)	2 d***	1 d	-1 d***	-3 d***	

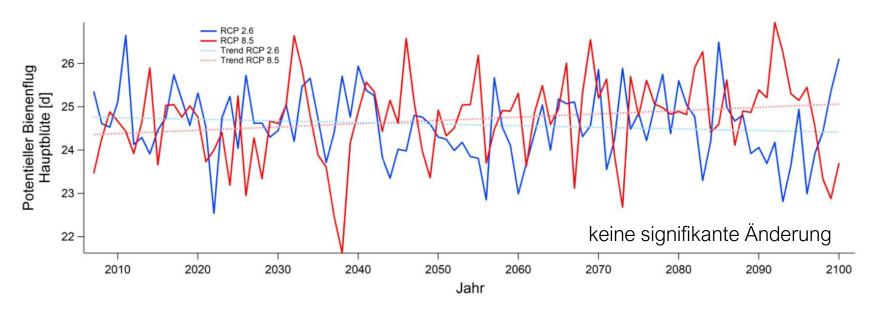

Z1: 2001-2040 Z2: 2041-2070

Z3: 2071-2100

^{***}Signifikanz mit P < 0.1 %

Mögliche Veränderungen des pot. Bienenflug (ganzes Jahr)

Mittel über 3 GCM, 6 Stationen und 9 Gitterpunkte je Station (n=162)



Ursachen:

- Temperaturanstieg (+1.3 ... +3.9 K)
- Zunahme des potentiellen Bienenflugs findet hauptsächlich nach der Hauptblüte statt, d.h. im Spätsommer und Herbst

Mögliche Veränderungen des pot. Bienenflugs (Hauptblüte)

Mittel über 3 GCM, 6 Stationen und 9 Gitterpunkte je Station (n=162)

Ursachen:

- Dauer der Hauptblüte (BB Hasel BE Winterlinde) bleibt konstant und verschiebt sich zum Jahresanfang (14 - 20 d), Folge: ein früheres Ende der Massentracht
- kürzere Tageslängen reduzieren den pot. Bienenflug, h(GS>200 Wm⁻²): -12 % in RCP 8.5
- höhere Temperaturen kompensieren diesen Effekt (+0.3 ...+1.0 K)

Mögliche Veränderungen des pot. Bienenflugs (Obstblüte)

Mittel über 3 GCM, 6 Stationen und 9 Gitterpunkte je Station (n=162)

Ursachen:

- Dauer der Obstblüte (BB Süßkirsche BE Apfel) verkürzt sich leicht (-1 ... -3 d) und verschiebt sich zum Jahresanfang (7 - 20 d)
- kürzere Tageslängen reduzieren den pot. Bienenflug, h(GS>200 Wm⁻²): -33% in RCP 8.5
- Temperaturen können diesen Effekt nicht kompensieren (-0.2 ...+0.2 K)

Zusammenfassung und Fazit

- Eine **Desynchronisierung** zwischen potentiellem Bienenflug und Blüte findet nicht statt, obwohl der Bienenflug während der Blütezeit durch kürzere Tageslängen begrenzt wird.
- Das verfrühte Auftreten der **Hauptblüte** kann durch günstigere Witterungsbedingungen (höhere Temperaturen, weniger Regentage, geringere Windgeschwindigkeiten) ausgeglichen werden. Es gibt keine sign. Änderung des pot. Bienenflugs.
- Die Verfrühung der Hauptblüte führt jedoch zu einer verlängerten trachtarmen und warmen Zeit im Sommer und Herbst, die durch Fütterung ausgeglichen werden muss.
- Für Imker*innen wird es daher immer wichtiger, die Zeit nach der Winterlindenblüte standortspezifisch durch Blühpflanzen bzw. Fütterung anzupassen.
- Während der Obstblüte nimmt der pot. Bienenflug um 19 44 % ab (kürzere Tage, keine Temperaturänderung).
- Der potentielle Bienenflug alleine ist nicht ausreichend, um quantitative Aussagen über den **Honigertrag** zu treffen, die lokale Trachtverfügbarkeit (Nektarangebot) muss berücksichtigt werden (Modellverbesserung).

Handlungsempfehlungen

- Erhalt von Lebensräumen mit Trachtpflanzen unterschiedlicher Blühzeiten, auch im landwirtschaftlichen Bereich (Blühstreifen)
- Abdeckung des Blühzeitraums im Spätsommer und Herbst, sonst besteht die Notwendigkeit einer stärkeren Fütterung
- Während Trockenphasen muss die Wasserversorgung der Bienen gewährleistet sein
- intensivere Varroabehandlung, da warme Winter die Ausbreitung der Varroamilbe begünstigen
- Erhalt der Gesundheit und Vitalität von Bienen in landwirtschaftlichen und urbanen Arealen.

Abschlussbericht verfügbar am Hunug

Danke für Ihre Aufmerksamkeit und die Förderung dieses Forschungsprojektes!

