Hessisches Landesamt für Umwelt und Geologie

Ludwig-Mond-Straße 33 34121 Kassel

Aktenzeichen: I 3 - 53e 16.37/Ber.RV-2011 Datum: 07.11.2012

Bearbeiter: M.Gerhold

JAHRESBERICHT 2011

über die Ergebnisse von Ringversuchen an der Emissionssimulationsanlage (*ESA*) zur Qualitätssicherung von Emissionsmessungen

1. Ausfertigung

Eine auszugsweise Vervielfältigung, in welcher Form auch immer, ist ohne ausdrückliche Zustimmung des Hessischen Landesamtes für Umwelt und Geologie nicht zulässig

> Das Dezernat I 3 - Luftreinhaltung / Emissionen ist akkreditiert nach DIN EN ISO/IEC 17025 und DIN EN ISO/ IEC 17043. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

INHALTSVERZEICHNIS

		Seite
1	EINLEITUNG	2
2	TERMINE UND BETEILIGTE MESSSTELLEN	2
3	DURCHFÜHRUNG DER RINGVERSUCHE (RV)	3
3.1	Beschreibung der Emissionssimulationsanlage (ESA)	3
3.2 3.2.1 3.2.1.1 3.2.2	Untersuchungsmethoden	3 4
3.3	Übermittlung der Ergebnisse	5
3.4.1 3.4.2 3.4.2.1 3.4.2.2	Auswertung durchgeführter Ringversuche Statistische Grundlagen Bewertung Gasförmige Emissionskomponenten Staub, Staubinhaltsstoffen	5 6 7
3.5	Ergebnismitteilung durch den Veranstalter	8
4	ZUSAMMENFASSUNG DER RV-ERGEBNISSE 2011	8
4.1	Staub und Staubinhaltsstoffe	8
4.2	Anorganische Gase / organische Verbindungen	37
4.3	Klassenzahlen	
4.3.1	Summe der Klassenzahlen für RV Staub / Staubinhaltsstoffe	
4.3.2 4.3.2.1	Summe der Klassenzahlen für RV gasförmige Stoffe	
4.3.2.2	(Kennung A der Bekanntgabe),Ermittlung der Emission organischer Verbindungen"	
4.3.2.3	(Kennung I der Bekanntgabe), Ermittlung der Emission organischer Verbindungen"	78
	(Kennung I der Bekanntgabe)	79
4.3.2.4	"Ermittlung der Emission organischer Verbindungen"	81
5	PRÜFGASUNTERSUCHUNGEN	83
5.1	Vorbemerkung	83
5.2 5.2.1 5.2.2 5.2.3 5.2.4	Technische Ausstattung zur Prüfgasuntersuchung	83 83 85
5.3	Ablauf der Prüfung	86
5.4	Ergebnisse der Prüfgasuntersuchungen	87

6	ERGEBNISZUSAMMENFASSUNG	89
7	INTERPRETATION	92
8	SCHLUSSBEMERKUNG	96
9	LITERATURVERZEICHNIS	97

1 Einleitung

Ringversuche spielen im Rahmen qualitätssichernder Maßnahmen von Emissionsmessungen eine nicht unwesentliche Rolle obwohl sie nicht das alleinige Maß der qualitativen Beurteilung für diese Art der Ermittlungen darstellen. Sie gestatten jedoch einen Einblick in die Arbeitsweise der mit Messungen beauftragten Stellen. Es kann überprüft werden, inwieweit die qualitativen Mindestanforderungen erfüllt werden oder nicht.

Seit 1994 werden in regelmäßigen Abständen Emissions-Ringversuche an der *E*missions *S*imulations *A*nlage (*ESA*) des Hessischen Landesamtes für Umwelt und Geologie in Kassel (HLUG), durchgeführt.

Im vorliegenden Bericht werden die Ergebnisse der Ringversuche des **Jahres 2011** zusammengefasst, statistisch ausgewertet und graphisch dargestellt. Um die Anonymität der Teilnehmer zu wahren, werden die für jedes Messinstitut vergebenen Identifikationscodes als Kennzeichnung verwendet. Diese Code-Nummer erlaubt es den Teilnehmern die eigenen Ergebnisse zu identifizieren und mit den anderen Teilnehmern zu vergleichen.

2 Termine und beteiligte Messstellen

Im Berichtsjahr wurden insgesamt 8 Ringversuche veranstaltet. Diese unterteilten sich in 4 Ringversuche für die "Ermittlung der Emission anorganischer Gase" (Kennung A der Bekanntgabe) und die "Ermittlung der Emission organischer Verbindungen" (Kennung I der Bekanntgabe) und 4 Ringversuche für den Bekanntgabebereich "Ermittlung von Staub und Staubinhaltsstoffen" (Kennung D der Bekanntgabe).

Die Bezeichnung der Ringversuche und die zugehörigen Termine sind der nachfolgenden Tabelle zu entnehmen:

Bezeichnung des Ringversuches	Termin	Gegenstand der Untersuchung
RV 238	24. – 27.01.2011	gasförmige Stoffe
RV 239	07. – 11.02.2011	gasförmige Stoffe
RV 240	08.02 - 03.03.2011	gasförmige Stoffe
RV 241	05. – 06.04.2011	partikelförmige Stoffe
RV 242	17. – 18.05.2011	partikelförmige Stoffe
RV 243	07. – 08-06.2011	partikelörmige Stoffe
RV 244	19. – 22.09.2011	gasförmige Stoffe
RV 245	25. – 26.10.2011	partikelförmige Stoffe

Tabelle 1

An den 8 im Jahr 2011 durchgeführten Ringversuchen nahmen insgesamt 31 Messstellen teil. Diese setzten sich aus nach § 26 Bundesimmissionsschutzgesetz (BImSchG) bekannt gegebenen Stellen und nicht bekannt gegebenen nationale Stellen die ggf. eine Bekanntgabe anstreben, sowie internationalen Stellen zusammen.

3 Durchführung der Ringversuche (RV)

3.1 Beschreibung der Emissionssimulationsanlage (ESA)

Die ESA ist eine Versuchsstrecke, in der man kontrollierte, konstante Stoffkonzentrationen, verschiedene Abgaszusammensetzungen und strömungstechnische Parameter simulieren kann. Sie wurde im Juli 1990 bei der damaligen **H**essischen **L**andesanstalt für **U**mwelt (HLFU, heute **H**essisches **L**andesamt für **U**mwelt und **G**eologie, HLUG) am Standort Kassel in Betrieb genommen.

Zweck dieser Anlage ist es:

- die Qualit\u00e4t von Emissionsmessungen zu sichern, zu verbessern und vergleichbar zu machen
- Beprobungseinrichtungen an der ESA zu kalibrieren
- emissionstechnische Grundsatzuntersuchungen durchzuführen

Simuliert werden partikel-, dampf- und gasförmige Stoffe, wie sie in industriellen Anlagen entstehen.

Partikelförmige Stoffe sind im Konzentrationsbereich von 1 - 50 mg/m³ in der ESA reproduzierbar zu dosieren, wobei jedoch üblicherweise im unteren Teil dieser Konzentrationsspanne gearbeitet wird.

Bei dampf- und gasförmigen Stoffen werden zurzeit Konzentrationsbereiche für die Gase Schwefeldioxid, Stickoxide (NO / NO₂) und Gesamt-C (angeboten als Propan und als Propan in Verbindung mit den organischen Einzelkomponenten) und die Komponenten Ethylbenzol, Toluol und o-, m-, p-Xylol (Isomere als Summe) in folgenden Größenordnungen eingesetzt:

Schwefeldioxid c = 20 bis 150 mg/m³
 Stickoxide (angegeben als NO2) c = 60 bis 450 mg/m³
 Propan (angegeben als Gesamt-C) c = 5 bis 100 mg/m³.
 Toluol, Ethylbenzol, o-, m-, p-Xylol (Summe der Komponenten)

Eine detaillierte Beschreibung der ESA kann der Homepage des HLUG im Internet unter folgender Adresse entnommen werden:

http://www.hlug.de/start/luft/emissionsueberwachung/ringversuche.html

3.2 Untersuchungsmethoden

3.2.1 Ermittlung von Staub und Staubinhaltsstoffen

Gegenstand der Untersuchung dieser Ringversuche waren im Berichtsjahr die Untersuchungsparameter "Staubkonzentration", sowie die Schwermetallkonzentrationen von Cd, Co, Cr, Cu, Ni und Pb.

Jeder Teilnehmer hatte die Ermittlung der Staubkonzentration durch isokinetische Entnahme eines staubbeladenen Teilvolumens gemäß Richtlinie VDI 2066, Blatt 1 November 2006 "Messen von Partikeln, Staubmessung in strömenden Gasen, gravimetrische Bestimmung der Staubbeladung" oder DIN EN 13284-1 April 2002 "Ermittlung der Staubmassenkonzentration bei geringen Staubkonzentrationen" durchzuführen.

Alle Bauteile der Beprobungseinrichtung mussten den Angaben der VDI Richtlinie 2066 Blatt 1 November 2006 bzw. DIN EN 13284-1 April 2002 entsprechen. Es wurden drei unterschiedliche Konzentrationsbereiche angeboten, die mit insgesamt 10 Einzelmessungen, 3 Staubproben je Konzentrationsbereich und einer Einführungsmessung zu Beginn der Messreihen (Blindwert) beprobt wurden. Die

Dauer der Einzelmessung betrug eine halbe Stunde. Die Probenahmen fanden für alle Teilnehmer zeitgleich statt.

3.2.1.1 Eingesetzte partikelförmige Standards

Zur Erzeugung von simulierten Staubemissionen an der ESA werden partikelförmige Standards benötigt, die zertifiziert sein müssen.

Da zertifizierte Referenzstaubproben häufig nur in kleinen Mengen und somit nur eingeschränkt zur Verfügung stehen, werden interne Referenzstaubproben, sogenannte "in-house-standards" für Ringversuche an der ESA eingesetzt. Die Referenzsubstanzen müssen in ihrer Gesamtheit homogen zusammengesetzt sein und ein vorgegebenes Korngrößenspektrum erfüllen.

Die Matrix ist ein industrieller Staub der durch gezielte Schwermetalldotierung, Mahl-, Sieb- und Trocknungsschritte optimiert wird. Durch intensives Mischen der Charge wird abschließend einen vollständige Homogenisierung des partikelförmigen Standards erreicht.

Eine Homogenitätsprüfung erfolgt einmal durch Untersuchung von speziell entnommenen Teilmengen aus dem hergestellten Standard und durch Analyse von belegten Filtern nach Testdosierungen mittels AAS ermittelt. Die Homogenität ist gegeben, wenn keine signifikanten Abweichungen der Schwermetallgehalte bei den Proben erkennbar sind (Mittelwert der analysierten Teilaliquotproben muss mind. eine Klassezahl und einen Z-Score-Wert von <2 aufweisen).

Die Ermittlung des konventionell richtigen Wertes ("wahrer Wert") der Schwermetalle einer dotierten Staubprobe erfolgt aus den Ringanalysendaten der Laboratorien der Landesanstalten. Um systematische Abweichungen zwischen den Bestimmungsmethoden zu erkennen und den "wahren Wert" annähernd zu ermitteln, wird der Median (ausreißerbereinigt nach Grubbs) als Lageparameter und Sollwert herangezogen.

3.2.2 Ermittlung gasförmiger Emissionskomponenten

Jeder Teilnehmer hatte die Massenkonzentration von SO₂, NO+NO₂ (angegeben als NO₂), Gesamt-C (Propan und organische Einzelkomponenten am 2. RV-Tag), sowie die organischen Einzelverbindungen Ethylbenzol, Toluol und o-, m-, p-Xylol (Xylole als Summe) durch sachgerechte Entnahme eines Teilvolumenstromes unter Berücksichtigung der Richtlinie DIN EN 15259 Jan. 2008 "Luftbeschaffenheit – Messung von Emissionen aus stationären Quellen – Anforderungen an Messstrecken und Messplätze und an die Messaufgabe, den Messplan und den Messbericht" [27] durchzuführen. Zusätzlich waren vor Beginn der eigentlichen Beprobung die messtechnischen Randbedingungen, wie Abgasgeschwindigkeit, Abgasdichte, Abgastemperatur und Abgasfeuchte zu bestimmen. Die Probenahme hatte unter Feldbedingungen zu erfolgen. Dies setzte u.a. voraus, dass beheizte Probenamesysteme einzusetzen waren.

Für die Komponenten Schwefeldioxid (SO₂) und Stickoxide (NO/NO₂ angegeben als NO₂) waren sowohl kontinuierlich arbeitende eignungsgeprüfte automatisch aufzeichnende Messeinrichtungen einzusetzen, als auch diskontinuierliche Referenzmessverfahren.

Die organischen Verbindungen Ethylbenzol, Toluol, o-, m-, p-Xylol und Propan waren kontinuierlich als Gesamt-C, mit Hilfe einer eignungsgeprüften automatisch arbeitenden Messeinrichtung (FID) zu erfassen. Diskontinuierlich waren die Einzelkomponenten Ethylbenzol, Toluol, o-, m-, p-Xylol mit einem Referenzverfahren (Xylole als Summe) zu ermitteln.

Zusätzlich war Propan (anzugeben als Gesamt-C) zusammen mit den anorganischen Untersuchungsparametern Schwefeldioxid (SO₂), Stickoxide

(NO+NO₂, anzugeben als NO₂) mit Hilfe einer eignungsgeprüften automatisch arbeitenden Messeinrichtung (FID) zu messen. Dieses Ergebnis diente ausschließlich zur Überprüfung der Gerätefunktion des FID und ging nicht in die Bewertung ein.

Die Probenahme sowohl für die kontinuierlichen, als auch für die diskontinuierlichen Messungen wurden von allen Teilnehmern zeitgleich durchgeführt.

3.3 Übermittlung der Ergebnisse

Die Messergebnisse für SO₂, NO/NO₂, Gesamt-C (Propan und Propan mit den organischen Einzelkomponenten) und die organischen Verbindungen Ethylbenzol, Toluol, o-, m-, p-Xylol waren auf Normalbedingungen (273 K, 1013 hPa, trocken) zu beziehen.

Für SO₂ und NO₂ war **keine**, für Gesamt-C (Propan), Gesamt-C (Summe Propan und organische Einzelkomponenten) und die organischen Verbindungen Ethylbenzol, Toluol, Summe Xylole **eine Nachkommastelle** anzugeben.

Die Ergebnisse für Staub waren in der Dimension [mg/m³] und die für die Schwermetalle in [μg/m³] mit jeweils einer Nachkommastelle anzugeben.

Die Rundung der Ergebnisse hatte gemäß Nr. 4.5.1 der DIN 1333 Bl. 2/1992 zu erfolgen.

Die Ergebnisübermittlung erfolgte über die Internetseite des HLUG. Hierzu erhielt jeder Teilnehmer einen vierstelligen Identifikationscode vom Veranstalter mit dem die Eingabemaske auf der HLUG-Internetseite frei zu schalten war. Der Code wurde den Teilnehmern in der Schlussbesprechung der Veranstaltung in einem verschlossenen Umschlag ausgehändigt. Alle Ergebnisse waren bis spätestens 4 Wochen für Gase bzw. 6 Wochen für Staub/Staubinhaltsstoffe nach Abschluss des Ringversuches dem Veranstalter zu übermitteln.

3.4 Auswertung durchgeführter Ringversuche

3.4.1 Statistische Grundlagen

Die Auswertung der Ringversuche erfolgte nach dem z-Score-Verfahren. Danach wird für jedes Mess- und Analysenergebnis eines i-ten Teilnehmers ein z-Score-Wert Z_i nach der Gleichung (1) berechnet.

$$z_i = \frac{x_i - X}{\sigma} \tag{1}$$

Legende:

xi = einzelner Mess-/ Analysenwert eines Konzentrationsniveaus

X = Schätzwert für das wahre Ergebnis (Sollwert)

 σ = Präzisionsvorgabe

Der **Schätzwert** (X) für das wahre Ergebnis einer **Staub**konzentration wurde aus den Kenndaten der Anlage (gravimetrisch erfasste Dosierrate, gemessener ESA-Volumenstrom) unter Berücksichtigung eines experimentell ermittelten Fehlers als feste Vorgabe berechnet. Die Schätzwerte für die wahren Ergebnisse der Schwermetallkonzentrationen ergaben sich jeweils als Mediane aus Analysendaten von Vergleichsuntersuchungen mehrerer Referenzlaboratorien als feste Vorgabe.

Die **Präzisionsvorgabe** σ (Abweichungstoleranz zum Sollwert) wurde als Qualitätsanforderung vorgegeben.

Sie betrug gemäß den Durchführungsbestimmungen für Ringversuche von § 26er-Meßstellen (partikelförmige Emissionskomponenten) Stand 2007:

für die Bestimmung der Staubkonzentration:
für die Bestimmung von Cd, Co, Cu, Ni und Pb:
für die Bestimmung von Cr:
7 % des jeweiligen Sollwertes
8 % des jeweiligen Sollwertes
12 % des jeweiligen Sollwertes

Der **Schätzwert** (X) für das "wahre Ergebnis" einer Schadgaskonzentration wurde aus den Messdaten der Dosieranlage und den Kenndaten der Emissionssimulationsanlage (gemessener ESA-Volumenstrom) als Vorgabe berechnet.

Die **Präzisionsvorgabe** σ (Abweichungstoleranz zum Sollwert) wurde als Qualitätsanforderung vorgegeben.

Sie betrug gemäß den Durchführungsbestimmungen für Ringversuche von § 26-Messstellen (gasförmige Emissionskomponenten) Stand 2007:

_	kont. Schwefeldioxidmessung:	σ	=	3,3 %	vom Sollwert
_	diskont. Schwefeldioxidbestimmung:	σ	=	2,9 %	vom Sollwert
_	kont. Stickstoffdioxidmessung:	σ	=	2,5%	vom Sollwert
-	diskont. Stickstoffdioxidbestimmung	σ	=	3,7 %	vom Sollwert
_	kont. Gesamt-C Bestimmung	σ	=	2,5 %	vom Sollwert
_	diskont. Toluolbestimmung:	σ	=	3,8 %	vom Sollwert
_	diskont. Ethylbenzolbestimmung	σ	=	4,5 %	vom Sollwert
-	diskont. Xylolbestimmung (Summe)	σ	=	3,9 %	vom Sollwert
_	kont. Propanmessung (Angabe als C):	σ	=	2,5 %	vom Sollwert *)

Die kont. Propanmessung wird nicht in die Bewertung einbezogen

3.4.2 Bewertung

Durch die Normierung auf die Präzisionsvorgabe ergab sich für die z-score Beträge ein allgemeines Bewertungsschema:

$ z_i \le 2$	Ergebnis zufriedenstellend
$2 < \left z_i \right < 3$	Ergebnis fraglich
$ z_i \ge 3$	Ergebnis unzureichend

Für die Bewertung des Ringversuches wurde jedem z-score-Wert einer Konzentrationsstufe eine Klassenzahl zugeteilt:

$\left z_{i}\right \leq 2$	zugeteilte Klassenzahl 1
$2 < z_i < 3$	zugeteilte Klassenzahl 2
$\left z_{i}\right \geq 3$	zugeteilte Klassenzahl 3

3.4.2.1 Gasförmige Emissionskomponenten

Für die Auswertung jedes Untersuchungsparameters (SO₂, NO₂ und organische Komponenten) mit jeweils 3 Konzentrationsstufen galt:

Die Summe der drei Klassenzahlen durfte maximal 5 betragen, anderenfalls wurde die Bestimmung des Untersuchungsparameters als "nicht erfolgreich" gewertet.

Für den Bekanntgabeumfang "Ermittlung der Emission anorganischer Gase" wurden die Ergebnisse der SO₂- und NO₂- Bestimmungen gemeinsam bewertet:

Eine erfolgreiche Teilnahme für den Bekanntgabebereich "Ermittlung der Emissionen von anorganischen Gasen" [A], ist dann gegeben, wenn mindestens 3 von 4 SO_2 -/ NO_2 -Ermittlungen (Erfolgsquote = 75 v.H.) mit Erfolg durchgeführt wurden.

Für den Bekanntgabebereich "Ermittlung der Emission organischer Verbindungen" [I], wurden die Ergebnisse die als Gesamt-C, mit Hilfe einer eignungsgeprüften automatisch arbeitenden Messeinrichtung (z.B. FID) erhalten wurden und die Ergebnisse der zeitgleich diskontinuierlich ermittelten Komponenten Ethylbenzol, Toluol und o-, m-, p-Xylol (angegeben als Summe Xylol) getrennt bewertet.

Bewertung für den Teilbereich "Gesamt-C"

Für eine erfolgreiche Teilnahme im Bekanntgabebereich "Ermittlung der Emission organischer Verbindungen" [I], Teilbereich "Gesamt-C" musste eine Klassenzahl ≤ 5 erreicht werden.

Bewertung für den Teilbereich "organische Einzelkomponenten"

Für eine erfolgreiche Teilnahme im Bekanntgabebereich "Ermittlung der Emission organischer Verbindungen" [I], Teilbereich "organische Einzelkomponenten" mussten mindestens 2 von 3 Komponenten (Ethylbenzol, Toluol und Summe Xylole) mit Erfolg (Klassenzahlen \leq 5) bestimmt worden sein (Erfolgsquote bezogen auf die Parameterzahl = 67 v.H.) um diesen Teil des Ringversuches bestanden zu haben.

3.4.2.2 Staub, Staubinhaltsstoffen

Für jeden Untersuchungsparameter mit jeweils 3 Konzentrationsstufen galt:

Die Summe der drei Klassenzahlen durfte maximal 5 betragen, anderenfalls wurde die Bestimmung des Untersuchungsparameters als "**nicht erfolgreich**" gewertet.

Analog zum Bekanntgabeumfang "Ermittlung von Staub, Staubinhaltsstoffen und an Staub adsorbierten chemischen Verbindungen" wurden die Ergebnisse für die Staubinhaltsstoffe gemeinsam bewertet. Für die gemeinsame Bewertung wurde folgende Regelung angewandt:

Für eine erfolgreiche Teilnahme im Bereich "Bestimmung von Staubinhaltsstoffen" mussten mindestens 5 von 6 Schwermetallen (Cd, Co, Cu, Ni, Pb und Cr) erfolgreich bestimmt worden sein. (Erfolgsquote bezogen auf die Parameterzahl = 83 v.H.)

Nach Durchführung des Ringversuchs gab es zwei Ergebnisteile, die Bestimmung von "Staub" und die "Bestimmung von Staubinhaltsstoffen", die unabhängig voneinander bewertet wurden.

3.5 Ergebnismitteilung durch den Veranstalter

Die Versendung der Ergebnisse als Kurzbericht in tabellarischer und in Diagrammform an die Ringversuchsteilnehmer erfolgte unter Angabe der jeweiligen Teilnehmernummer (ID-Code) spätestens 6 Wochen nach Ablauf der Abgabefrist.

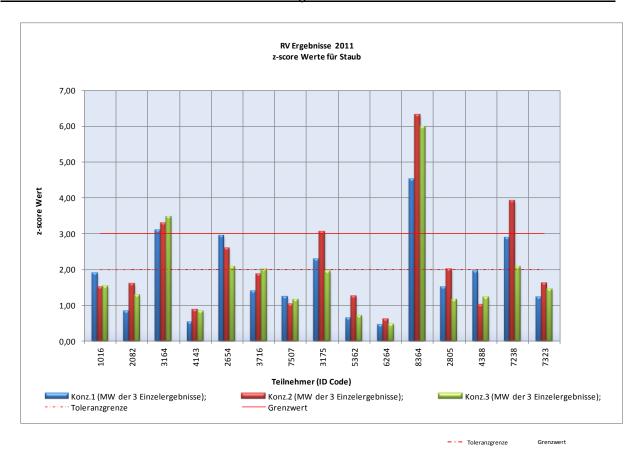
4 Zusammenfassung der RV-Ergebnisse 2011

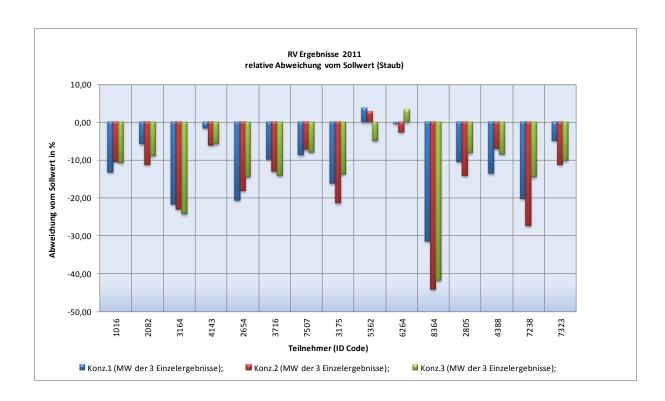
4.1 Staub und Staubinhaltsstoffe

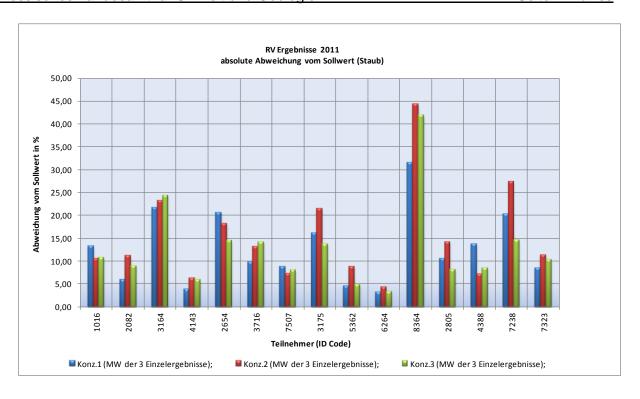
Es wurden im Berichtszeitraum 4 Ringversuche für "Staub und Staubinhaltsstoffe" mit insgesamt 15 Teilnehmern durchgeführt. Diese setzten sich aus 14 nach § 26 BImSchG bekannt gegebenen Stellen, und einer nicht nach § 26 BImSchG bekannt gegebenen internationalen Stelle bzw. Einrichtung die freiwillig an Emissionsringversuchen teilnahm zusammen.

Bezeichnung des Ringversuches	Termin	Gegenstand der Untersuchung
RV 241	05. – 06.04.2011	partikelförmige Stoffe
RV 242	17. – 18.05.2011	partikelförmige Stoffe
RV 243	07. – 08-06.2011	partikelförmige Stoffe
RV 245	25. – 26.10.2011	partikelförmige Stoffe

Tabelle 2

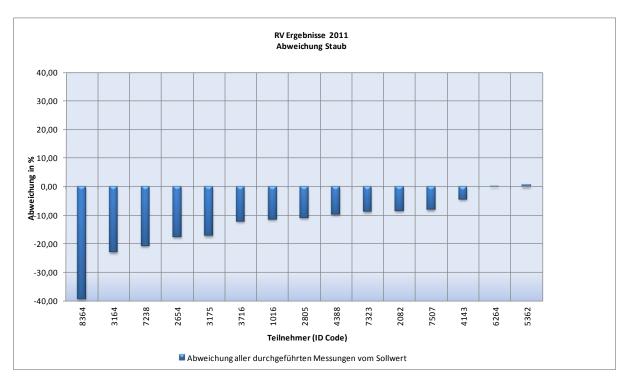

Folgende Einzelergebnisse wurden erzielt:

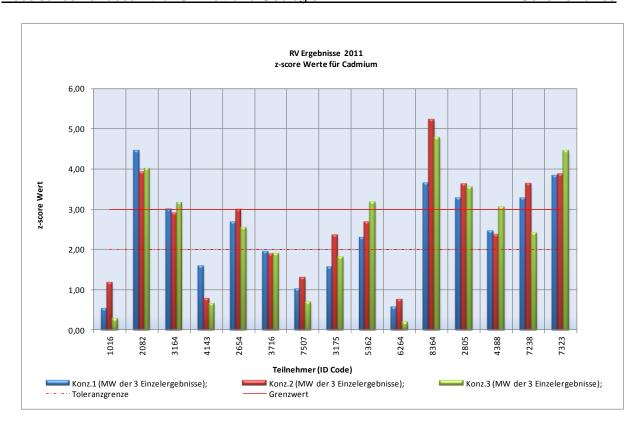

Ergebnistabelle für die Ermittlung von Staub

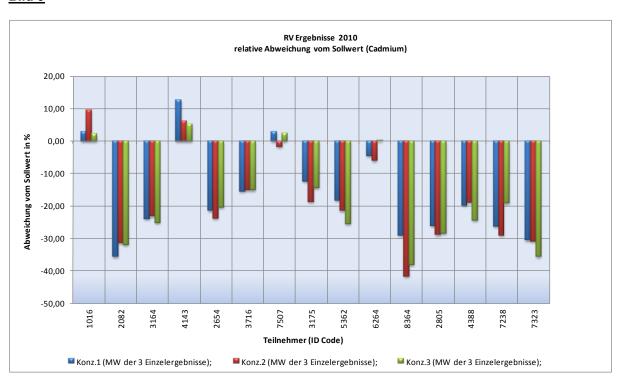

Teilnehmer	Konzen-	z-scor	e Wert für	Staub	Sigma =	7.0%	re	lative Ab	weichnun	ıa (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert		Mittelwert
1016	1	2,38	2,16	1,13	1,89	1	-16,7	-15,1	-7,9	-13,2
1016	2	1,99	1,55	0,95	1,50	1	-14,0	-10,8	-6,6	-10,5
1016	3	1,12	1,49	1,94	1,52	1	-7,9	-10,4	-13,6	-10,6
1010	•	1,12	1,40	1,04	1,64	3	7,5	10,4	10,0	10,0
2082	1	0,55	0,81	1,13	0,83	1	-3,8	-5,7	-7,9	-5,8
2082	2	2,27	0,80	1,72	1,60	1	-15,9	-5,6	-12,0	-11,2
2082	3	1,32	1,68	0,82	1,27	1	-9,2	-11,7	-5,8	-8,9
					1,23	3				
3164	1	2,84	3,05	3,40	3,10	3	-19,9	-21,4	-23,8	-21,7
3164	2	2,81	3,30	3,77	3,29	3	-19,7	-23,1	-26,4	-23,1
3164	3	2,67	3,56	4,19	3,47	3	-18,7	-24,9	-29,3	-24,3
					3,29	9				
4143	1	0,37	0,09	1,13	0,53	1	2,6	0,6	-7,9	-1,6
4143	2	0,90	0,80	0,95	0,88	1	-6,3	-5,6	-6,6	-6,2
4143	3	0,93	1,30	0,26	0,83	1	-6,5	-9,1	-1,8	-5,8
					0,75	3				
2654	1	2,06	4,59	2,16	2,94	2	-14,5	-32,2	-15,2	-20,6
2654	2	3,03	1,89	2,85	2,59	2	-21,2	-13,2	-19,9	-18,1
2654	3	2,12	2,08	2,01	2,07	2	-14,8	-14,5	-14,1	-14,5
					2,53	6				
3716	1	2,06	1,22	0,87	1,38	1	-14,5	-8,6	-6,1	-9,7
3716	2	1,96	2,17	1,45	1,86	1	-13,7	-15,2	-10,2	-13,0
3716	3	1,75	2,26	2,01	2,01	2	-12,3	-15,8	-14,1	-14,0
					1,75	4				
7507	1	1,64	1,64	0,43	1,24	1	-11,5	-11,5	-3,0	-8,7
7507	2	1,15	1,04	0,89	1,03	1	-8,1	-7,3	-6,3	-7,2
7507	3	1,20	1,35	0,89	1,15	1	-8,4	-9,4	-6,2	-8,0
					1,14	3				
3175	1	1,62	2,38	2,88	2,29	2	-11,3	-16,7	-20,1	-16,0
3175	2	3,25	3,36	2,58	3,06	3	-22,8	-23,5	-18,0	-21,4
3175	3	3,06	1,94	0,86	1,95	1	-21,4	-13,6	-6,0	-13,7
					2,43	6				
5362	1	1,44	0,18	0,32	0,65	1	10,1	-1,2	2,2	3,7
5362	2	1,27	1,24	1,23	1,25	1	-8,9	8,7	8,6	2,8
5362	3	0,04	0,26	1,78	0,69	1	-0,2	-1,8	-12,5	-4,9
					0,86	3				

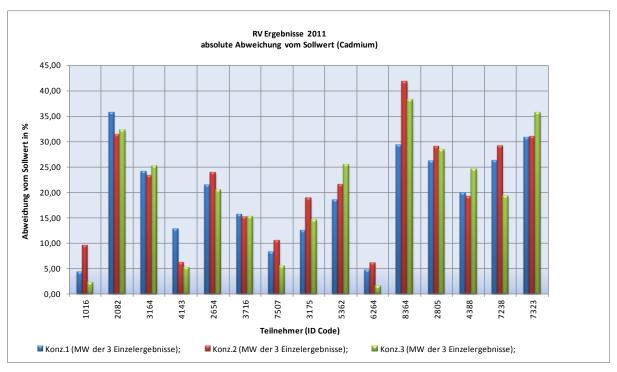
Teilnehmer	Konzen-	z-score Wert für Staub			Sigma =	7,0%	re	relative Abweichnung (%)		
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	0,57	0,62	0,14	0,44	1	4,0	-4,3	-1,0	-0,4
6264	2	0,99	0,49	0,35	0,61	1	-6,9	-3,4	2,5	-2,6
6264	3	1,03	0,11	0,24	0,46	1	7,2	0,8	1,7	3,2
					0,50	3				
8364	1	4,24	4,14	5,16	4,51	3	-29,7	-29,0	-36,1	-31,6
8364	2	7,21	5,38	6,38	6,32	3	-50,5	-37,6	-44,7	-44,3
8364	3	6,27	4,38	7,30	5,98	3	-43,9	-30,6	-51,1	-41,9
					5,60	9				
2805	1	1,72	1,62	1,17	1,50	1	-12,1	-11,3	-8,2	-10,5
2805	2	2,92	1,27	1,85	2,01	2	-20,4	-8,9	-13,0	-14,1
2805	3	1,01	0,88	1,56	1,15	1	-7,0	-6,2	-10,9	-8,0
					1,55	4				
4388	1	2,19	2,49	1,17	1,95	1	-15,3	-17,4	-8,2	-13,6
4388	2	1,38	0,98	0,64	1,00	1	-9,7	-6,9	-4,5	-7,0
4388	3	1,01	1,43	1,18	1,21	1	-7,0	-10,0	-8,2	-8,4
					1,39	3				
7238	1	3,12	2,93	2,62	2,89	2	-21,8	-20,5	-18,4	-20,2
7238	2	4,76	3,30	3,67	3,91	3	-33,3	-23,1	-25,7	-27,4
7238	3	2,33	2,90	0,98	2,07	2	-16,3	-20,3	-6,9	-14,5
					2,96	7				
7323	1	0,79	2,05	0,78	1,21	1	-5,5	-14,4	5,4	-4,8
7323	2	2,61	0,98	1,24	1,61	1	-18,3	-6,9	-8,7	-11,3
7323	3	1,38	1,98	0,98	1,45	1	-9,7	-13,9	-6,9	-10,2
					1,42	3				
Teilbereich	nicht hes	tanden	krit	isch	Teilbere	ich besta	nden			

Tabelle 3



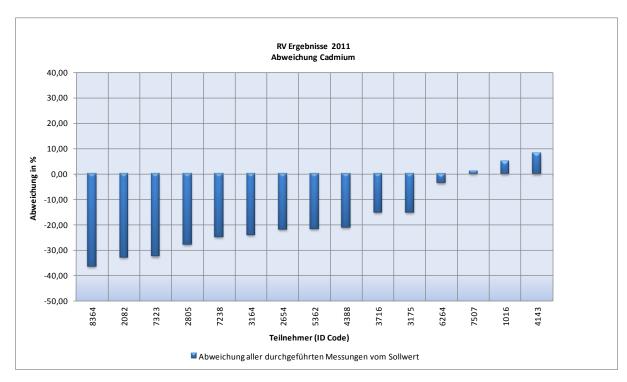

Bild 4

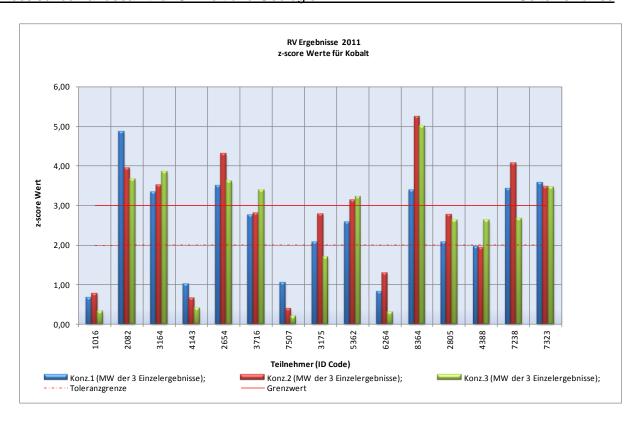

Ergebnistabelle für die Ermittlung von Cadmium


Teilnehmer	Konzen-	z-score	Wert für Ca	admium	Sigma =	8,0%	re	lative Ab	weichnun	ng (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1016	1	1,18	0,23	0,14	0,52	1	9,5	-1,8	1,1	2,9
1016	2	1,74	0,91	0,88	1,18	1	13,9	7,3	7,1	9,4
1016	3	0,34	0,27	0,19	0,27	1	2,7	2,1	1,5	2,1
					0,66	3				
2082	1	4,38	4,32	4,69	4,46	3	-35,1	-34,5	-37,5	-35,7
2082	2	3,79	3,52	4,44	3,92	3	-30,3	-28,1	-35,6	-31,3
2082	3	3,28	4,59	4,17	4,01	3	-26,3	-36,7	-33,3	-32,1
					4,13	9				
3164	1	2,99	2,73	3,31	3,01	3	-23,9	-21,8	-26,5	-24,1
3164	2	2,54	2,88	3,27	2,90	2	-20,4	-23,1	-26,2	-23,2
3164	3	2,40	3,16	3,88	3,15	3	-19,2	-25,3	-31,1	-25,2
					3,02	8				
4143	1	1,88	2,27	0,60	1,58	1	15,0	18,2	4,8	12,7
4143	2	0,36	0,91	1,01	0,76	1	2,9	7,3	8,1	6,1
4143	3	0,44	0,36	1,14	0,65	1	3,5	2,9	9,1	5,2
					1,00	3				
2654	1	1,62	3,54	2,85	2,67	2	-13,0	-28,3	-22,8	-21,4
2654	2	4,09	1,94	2,90	2,98	2	-32,7	-15,5	-23,2	-23,8
2654	3	2,60	2,26	2,80	2,55	2	-20,8	-18,1	-22,4	-20,4
					2,73	6				
3716	1	2,47	2,05	1,32	1,95	1	-19,8	-16,4	-10,5	-15,6
3716	2	1,64	2,37	1,62	1,88	1	-13,1	-18,9	-13,0	-15,0
3716	3	1,30	2,44	1,95	1,90	1	-10,4	-19,6	-15,6	-15,2
					1,91	3				
7507	1	0,98	0,94	1,10	1,01	1	-7,8	7,5	8,8	2,8
7507	2	1,78	0,51	1,62	1,30	1	-14,2	-4,1	13,0	-1,8
7507	3	0,55	0,42	1,06	0,68	1	-4,4	3,3	8,5	2,5
					1,00	3				
3175	1	0,55	2,01	2,10	1,55	1	-4,4	-16,1	-16,8	-12,4
3175	2	2,62	2,75	1,68	2,35	2	-21,0	-22,0	-13,4	-18,8
3175	3	2,85	1,99	0,59	1,81	1	-22,8	-15,9	-4,7	-14,5
					1,90	4				
5362	1	2,54	2,23	2,10	2,29	2	-20,4	-17,9	-16,8	-18,3
5362	2	3,91	2,02	2,12	2,68	2	-31,3	-16,2	-17,0	-21,5
5362	3	3,03	3,03	3,47	3,18	3	-24,2	-24,2	-27,8	-25,4
					2,72	7				

Teilnehmer	Konzen-	z-score	Wert für C	admium	Sigma =	8,0%	re	lative Abv	veichnung	j (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	0,55	0,67	0,49	0,57	1	-4,4	-5,4	-3,9	-4,6
6264	2	1,62	0,13	0,49	0,75	1	-12,9	-1,0	-3,9	-6,0
6264	3	0,23	0,09	0,25	0,19	1	-1,9	0,8	2,0	0,3
					0,50	3				
8364	1	3,21	4,24	3,49	3,65	3	-25,7	-33,9	-27,9	-29,2
8364	2	5,77	4,79	5,09	5,22	3	-46,2	-38,3	-40,7	-41,7
8364	3	4,92	4,36	5,05	4,78	3	-39,4	-34,8	-40,4	-38,2
					4,55	9				
2805	1	3,36	2,77	3,67	3,27	3	-26,9	-22,1	-29,4	-26,1
2805	2	3,67	3,01	4,14	3,61	3	-29,4	-24,1	-33,1	-28,9
2805	3	3,55	3,03	4,08	3,55	3	-28,4	-24,2	-32,6	-28,4
					3,48	9				
4388	1	2,95	2,89	1,54	2,46	2	-23,6	-23,2	-12,3	-19,7
4388	2	3,31	2,16	1,65	2,37	2	-26,5	-17,3	-13,2	-19,0
4388	3	3,05	2,76	3,35	3,05	3	-24,4	-22,0	-26,8	-24,4
					2,63	7				
7238	1	2,54	3,92	3,39	3,28	3	-20,3	-31,4	-27,1	-26,3
7238	2	3,94	3,69	3,25	3,63	3	-31,6	-29,5	-26,0	-29,0
7238	3	1,99	3,67	1,54	2,40	2	-15,9	-29,4	-12,3	-19,2
					3,10	8				
7323	1	4,72	3,66	3,10	3,83	3	-37,8	-29,3	-24,8	-30,6
7323	2	4,94	4,03	2,63	3,87	3	-39,5	-32,2	-21,1	-30,9
7323	3	4,49	4,59	4,31	4,46	3	-35,9	-36,7	-34,4	-35,7
					4,05	9				
Teilbereich	nicht bes	tanden	krit	isch	Teilber	eich besta	nden			

Tabelle 4




Bild 8

Ergebnistabelle für die Ermittlung von Kobalt

Teilnehmer	Konzen-	z-scor	e Wert für	Kobalt	Sigma =	8,0%	re	lative Ab	weichnun	ıg (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1016	1	0,11	1,33	0,53	0,66	1	0,8	-10,7	-4,2	-4,7
1016	2	0,98	0,40	0,94	0,77	1	7,8	3,2	7,5	6,2
1016	3	0,47	0,23	0,24	0,31	1	-3,8	-1,8	-1,9	-2,5
					0,58	3				
2082	1	4,97	5,28	4,35	4,87	3	-39,8	-42,3	-34,8	-38,9
2082	2	3,83	3,47	4,51	3,94	3	-30,6	-27,8	-36,1	-31,5
2082	3	3,54	4,44	2,99	3,66	3	-28,3	-35,5	-23,9	-29,3
					4,16	9				
3164	1	3,31	3,14	3,57	3,34	3	-26,5	-25,1	-28,5	-26,7
3164	2	3,20	3,47	3,87	3,51	3	-25,6	-27,8	-31,0	-28,1
3164	3	3,02	3,97	4,56	3,85	3	-24,2	-31,8	-36,5	-30,8
					3,57	9				
4143	1	0,63	0,99	1,40	1,01	1	5,0	7,9	-11,2	0,6
4143	2	0,64	0,49	0,83	0,65	1	-5,1	3,9	-6,6	-2,6
4143	3	0,32	0,37	0,55	0,41	1	-2,6	-3,0	4,4	-0,4
					0,69	3				
2654	1	2,83	4,60	3,06	3,50	3	-22,6	-36,8	-24,5	-28,0
2654	2	5,48	3,56	3,86	4,30	3	-43,8	-28,4	-30,9	-34,4
2654	3	3,72	3,55	3,57	3,61	3	-29,8	-28,4	-28,6	-28,9
					3,80	9				
3716	1	3,39	2,83	1,99	2,74	2	-27,1	-22,6	-15,9	-21,9
3716	2	2,61	3,45	2,31	2,79	2	-20,9	-27,6	-18,5	-22,3
3716	3	3,90	3,51	2,75	3,39	3	-31,2	-28,1	-22,0	-27,1
					2,97	7				
7507	1	0,33	0,81	1,99	1,04	1	-2,6	-6,5	15,9	2,2
7507	2	0,46	0,38	0,34	0,39	1	-3,6	3,0	-2,7	-1,1
7507	3	0,06	0,41	0,09	0,19	1	-0,5	-3,3	0,7	-1,0
					0,54	3				
3175	1	1,80	2,55	1,85	2,07	2	-14,4	-20,4	-14,8	-16,6
3175	2	2,98	3,05	2,31	2,78	2	-23,8	-24,4	-18,5	-22,2
3175	3	2,72	1,74	0,62	1,69	1	-21,8	-13,9	-4,9	-13,5
					2,18	5				
5362	1	2,64	2,55	2,55	2,58	2	-21,1	-20,4	-20,4	-20,6
5362	2	4,28	2,61	2,48	3,12	3	-34,2	-20,8	-19,8	-25,0
5362	3	3,13	2,95	3,57	3,22	3	-25,1	-23,6	-28,6	-25,8
					2,97	8				

Teilnehmer	Konzen-	z-scor	e Wert für l	Kobalt	Sigma =	8,0%	re	lative Abw	eichnung	(%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	0,72	0,95	0,80	0,82	1	-5,7	-7,6	-6,4	-6,6
6264	2	1,90	0,90	1,08	1,29	1	-15,2	-7,2	-8,6	-10,3
6264	3	0,51	0,34	0,05	0,30	1	-4,1	-2,7	0,4	-2,1
					0,80	3				
8364	1	2,72	4,16	3,25	3,38	3	-21,8	-33,2	-26,0	-27,0
8364	2	6,01	4,75	5,00	5,25	3	-48,1	-38,0	-40,0	-42,0
8364	3	5,31	4,28	5,40	5,00	3	-42,5	-34,2	-43,2	-40,0
					4,54	9				
2805	1	2,26	1,51	2,44	2,07	2	-18,0	-12,1	-19,6	-16,6
2805	2	2,84	2,11	3,36	2,77	2	-22,7	-16,9	-26,9	-22,2
2805	3	2,70	2,06	3,10	2,62	2	-21,6	-16,5	-24,8	-21,0
					2,49	6				
4388	1	2,50	2,43	0,92	1,95	1	-20,0	-19,4	-7,3	-15,6
4388	2	3,00	1,66	1,14	1,93	1	-24,0	-13,3	-9,1	-15,5
4388	3	2,66	2,25	2,95	2,62	2	-21,2	-18,0	-23,6	-21,0
					2,17	4				
7238	1	2,87	3,80	3,59	3,42	3	-22,9	-30,4	-28,7	-27,3
7238	2	4,61	4,24	3,36	4,07	3	-36,9	-33,9	-26,9	-32,6
7238	3	2,56	3,84	1,59	2,66	2	-20,4	-30,7	-12,7	-21,3
					3,38	8				
7323	1	4,21	3,57	2,95	3,58	3	-33,7	-28,6	-23,6	-28,6
7323	2	4,53	4,54	1,37	3,48	3	-36,3	-36,3	-11,0	-27,9
7323	3	3,65	3,84	2,90	3,46	3	-29,2	-30,7	-23,2	-27,7
					3,51	9				
Teilbereich	Teilbereich nicht bestanden		kriti	sch	Tei	lbereich l	estande	n		

Tabelle 5

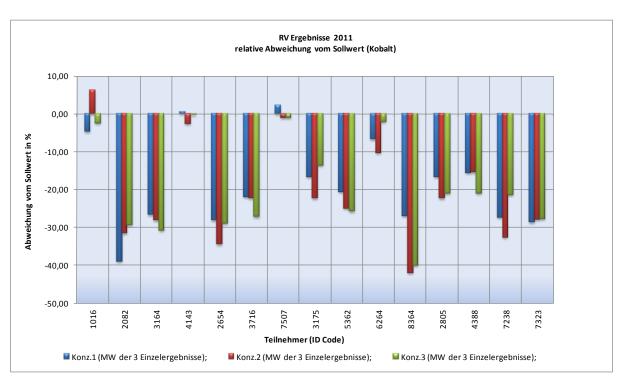
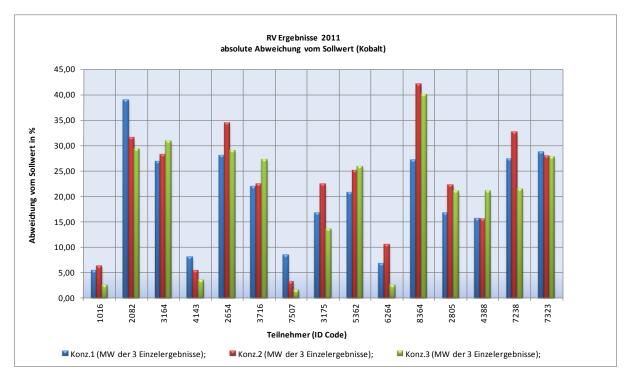
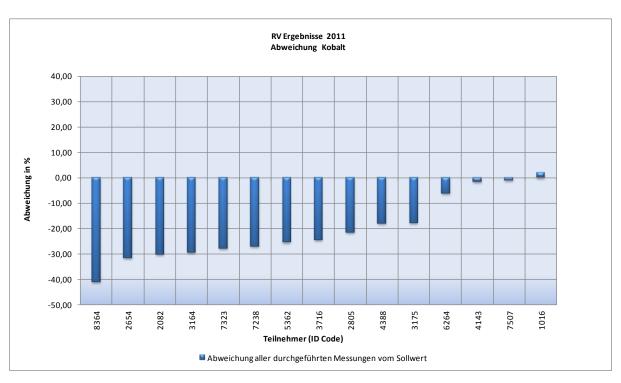
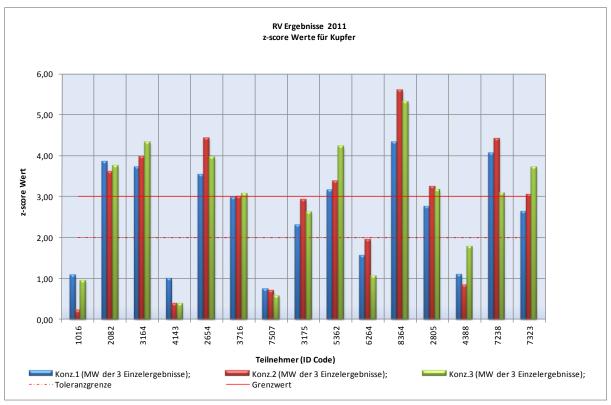
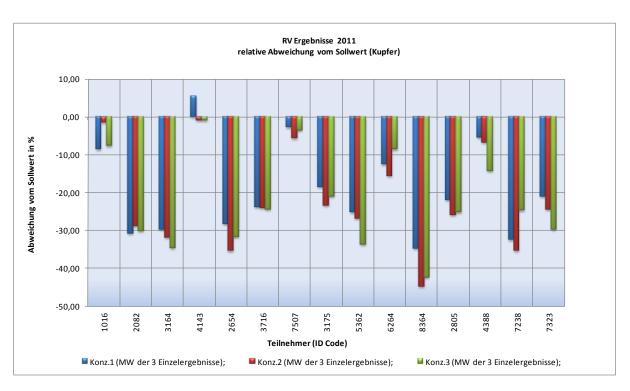




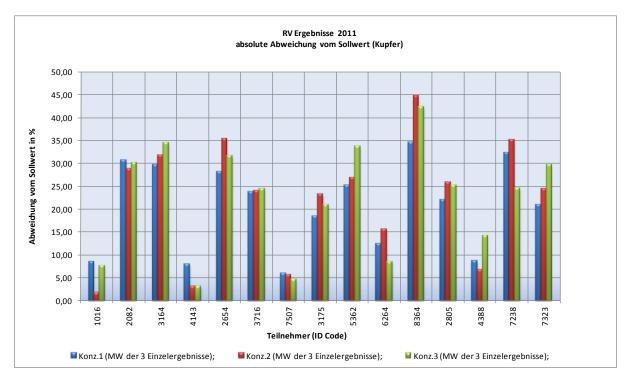
Bild 10


Bild 12

Ergebnistabelle für die Ermittlung von Kupfer


Teilnehmer	Konzen-	z-scor	e Wert für l	Kupfer	Sigma =	8,0%	re	lative Ab	weichnun	ıg (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1016	1	0,53	1,64	1,04	1,07	1	-4,3	-13,1	-8,3	-8,6
1016	2	0,06	0,31	0,26	0,21	1	0,5	-2,5	-2,1	-1,4
1016	3	1,05	0,87	0,91	0,94	1	-8,4	-7,0	-7,3	-7,6
					0,74	3				
2082	1	3,90	4,26	3,39	3,85	3	-31,2	-34,1	-27,1	-30,8
2082	2	3,71	2,69	4,41	3,60	3	-29,7	-21,5	-35,3	-28,8
2082	3	1,92	5,02	4,34	3,76	3	-15,4	-40,2	-34,8	-30,1
					3,74	9				
3164	1	3,50	3,68	3,98	3,72	3	-28,0	-29,4	-31,8	-29,7
3164	2	3,65	3,98	4,30	3,98	3	-29,2	-31,8	-34,4	-31,8
3164	3	3,60	4,45	4,91	4,32	3	-28,8	-35,6	-39,3	-34,5
					4,01	9				
4143	1	0,75	1,76	0,45	0,99	1	6,0	14,0	-3,6	5,5
4143	2	0,76	0,39	0,02	0,39	1	-6,1	3,1	0,1	-0,9
4143	3	0,25	0,51	0,42	0,39	1	-2,0	-4,1	3,4	-0,9
					0,59	3				
2654	1	2,67	5,13	2,78	3,53	3	-21,4	-41,0	-22,2	-28,2
2654	2	5,27	3,98	4,01	4,42	3	-42,1	-31,8	-32,0	-35,3
2654	3	3,98	4,00	3,90	3,96	3	-31,8	-32,0	-31,2	-31,7
					3,97	9				
3716	1	3,58	3,22	2,12	2,97	2	-28,7	-25,8	-17,0	-23,8
3716	2	2,84	3,49	2,68	3,00	3	-22,7	-27,9	-21,4	-24,0
3716	3	2,59	3,57	3,02	3,06	3	-20,7	-28,5	-24,2	-24,5
					3,01	8				
7507	1	0,95	0,67	0,59	0,74	1	-7,6	-5,4	4,7	-2,7
7507	2	1,10	0,27	0,75	0,71	1	-8,8	-2,1	-6,0	-5,7
7507	3	0,36	1,17	0,19	0,57	1	-2,9	-9,3	1,5	-3,6
					0,67	3				
3175	1	1,56	2,41	2,94	2,30	2	-12,5	-19,3	-23,5	-18,4
3175	2	2,97	3,62	2,13	2,91	2	-23,8	-29,0	-17,0	-23,3
3175	3	3,46	2,97	1,42	2,62	2	-27,7	-23,8	-11,4	-20,9
					2,61	6				
5362	1	3,25	3,08	3,13	3,15	3	-26,0	-24,6	-25,1	-25,2
5362	2	4,25	3,19	2,64	3,36	3	-34,0	-25,5	-21,1	-26,9
5362	3	4,12	4,10	4,44	4,22	3	-32,9	-32,8	-35,5	-33,8
					3,58	9				

Teilnehmer	Konzen-	z-scor	e Wert für l	Kupfer	Sigma =	8,0%	re	lative Abw	/eichnung	J (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	1,46	1,65	1,56	1,56	1	-11,7	-13,2	-12,5	-12,4
6264	2	2,66	1,58	1,62	1,95	1	-21,3	-12,6	-13,0	-15,6
6264	3	1,27	1,24	0,67	1,06	1	-10,2	-9,9	-5,3	-8,5
					1,52	3				
8364	1	4,29	4,69	4,02	4,33	3	-34,3	-37,5	-32,2	-34,7
8364	2	6,45	4,99	5,36	5,60	3	-51,6	-39,9	-42,8	-44,8
8364	3	5,54	4,75	5,63	5,31	3	-44,3	-38,0	-45,0	-42,4
					5,08	9				
2805	1	2,96	2,32	2,96	2,75	2	-23,7	-18,6	-23,7	-22,0
2805	2	3,22	2,64	3,86	3,24	3	-25,7	-21,1	-30,9	-25,9
2805	3	3,25	2,75	3,47	3,16	3	-26,0	-22,0	-27,8	-25,2
					3,05	8				
4388	1	1,15	1,47	0,61	1,08	1	-9,2	-11,8	4,9	-5,4
4388	2	1,56	0,77	0,19	0,84	1	-12,5	-6,1	-1,5	-6,7
4388	3	1,81	1,56	1,97	1,78	1	-14,5	-12,5	-15,8	-14,3
					1,23	3				
7238	1	3,46	4,49	4,22	4,06	3	-27,7	-35,9	-33,7	-32,4
7238	2	4,21	4,95	4,05	4,40	3	-33,7	-39,6	-32,4	-35,2
7238	3	2,71	4,38	2,14	3,08	3	-21,7	-35,0	-17,1	-24,6
					3,85	9				
7323	1	3,46	2,41	2,01	2,63	2	-27,7	-19,3	-16,1	-21,0
7323	2	3,88	3,39	1,89	3,05	3	-31,0	-27,1	-15,1	-24,4
7323	3	3,49	3,98	3,68	3,72	3	-27,9	-31,8	-29,4	-29,7
					3,13	8				
Teilbereich nicht bestanden			kriti	isch	Teilbere	eich besta	anden			


Tabelle 6

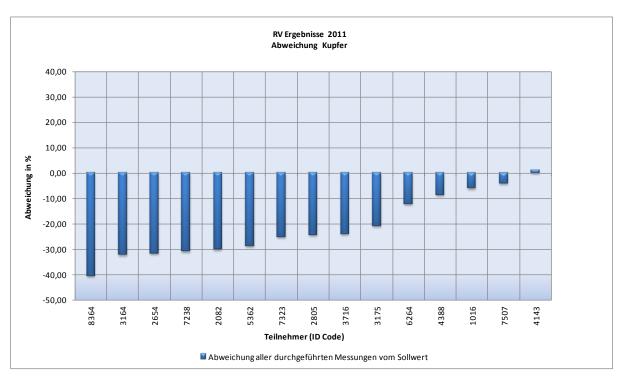
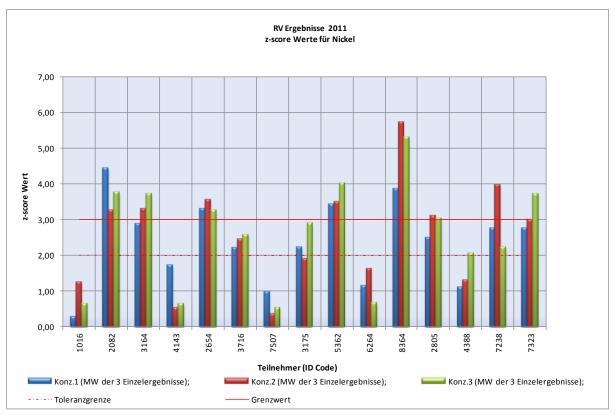
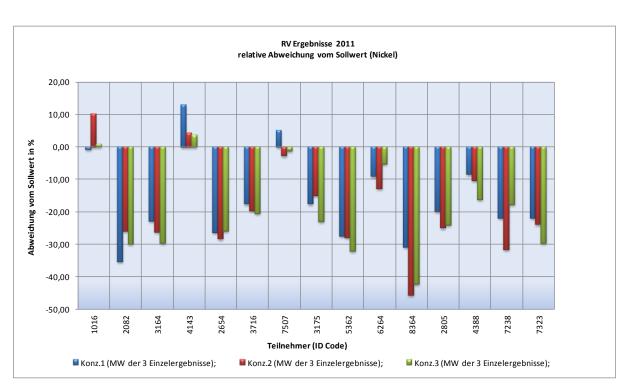


Bild 13

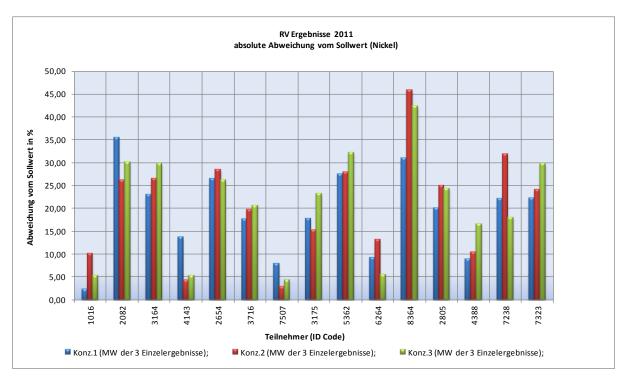
Bild 14


Bild 16

Ergebnistabelle für die Ermittlung von Nickel


Teilnehmer	Konzen-	7-500	re Wert für	Nickel	Sigma =	8.0%	re	lative Ah	weichnun	na (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse		2. Wert		Mittelwert
1016	1	0,18	0,06	0,61	0,28	1	1,5	0,4	-4,9	-1,0
1016	2	1,00	0,00	2,67	1,25	1	8,0	0,4	21,4	10,0
1016	3	0,28	0,09	1,12	0,66	1	-2,2	-4,5	9,0	0,7
1010	3	0,20	0,57	1,12		3	-2,2	-4,5	9,0	0,7
2000	4	4.00	5.40	0.00	0,73		00.7	40.0	05.7	05.4
2082	1	4,96	5,10	3,22	4,43	3	-39,7	-40,8	-25,7	-35,4
2082	2	2,96	3,09	3,73	3,26	3	-23,7	-24,7	-29,9	-26,1
2082	3	3,03	4,47	3,77	3,76	3	-24,2	-35,7	-30,2	-30,1
					3,82	9				
3164	1	2,90	2,75	2,99	2,88	2	-23,2	-22,0	-23,9	-23,0
3164	2	2,96	3,27	3,67	3,30	3	-23,7	-26,2	-29,3	-26,4
3164	3	2,98	3,81	4,38	3,72	3	-23,9	-30,5	-35,1	-29,8
					3,30	8				
4143	1	2,13	2,86	0,16	1,72	1	17,0	22,9	-1,3	12,9
4143	2	0,93	0,65	0,02	0,53	1	7,4	5,2	-0,2	4,2
4143	3	1,08	0,33	0,56	0,66	1	8,6	-2,7	4,5	3,5
					0,97	3				
2654	1	2,51	4,30	3,10	3,30	3	-20,1	-34,4	-24,8	-26,4
2654	2	4,07	3,08	3,52	3,56	3	-32,6	-24,6	-28,1	-28,5
2654	3	3,57	2,95	3,26	3,26	3	-28,6	-23,6	-26,1	-26,1
					3,37	9				
3716	1	2,83	2,30	1,48	2,20	2	-22,6	-18,4	-11,8	-17,6
3716	2	2,33	3,08	1,98	2,46	2	-18,7	-24,6	-15,9	-19,7
3716	3	2,10	3,13	2,47	2,57	2	-16,8	-25,1	-19,8	-20,6
					2,41	6				
7507	1	0,64	0,52	1,76	0,97	1	5,1	-4,1	14,1	5,0
7507	2	0,80	0,27	0,03	0,37	1	-6,4	-2,1	0,3	-2,7
7507	3	0,29	1,04	0,26	0,53	1	2,3	-8,3	2,1	-1,3
					0,62	3				
3175	1	1,81	2,60	2,24	2,22	2	-14,5	-20,8	-18,0	-17,7
3175	2	2,20	2,17	1,32	1,90	1	-17,6	-17,3	-10,6	-15,2
3175	3	4,32	2,56	1,81	2,90	2	-34,6	-20,5	-14,5	-23,2
					2,34	5				
5362	1	3,34	3,37	3,61	3,44	3	-26,7	-26,9	-28,9	-27,5
5362	2	4,81	2,74	2,93	3,49	3	-38,5	-21,9	-23,4	-27,9
5362	3	3,34	4,05	4,65	4,01	3	-26,7	-32,4	-37,2	-32,1
					3,65	9				

Teilnehmer	Konzen-	z-scoi	e Wert für	Nickel	Sigma =	8,0%	re	lative Abw	eichnung	(%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	1,05	1,28	1,11	1,15	1	-8,4	-10,2	-8,8	-9,1
6264	2	2,27	1,38	1,25	1,63	1	-18,1	-11,0	-10,0	-13,0
6264	3	0,85	0,74	0,43	0,67	1	-6,8	-5,9	-3,5	-5,4
					1,15	3				
8364	1	3,77	4,69	3,16	3,87	3	-30,2	-37,5	-25,3	-31,0
8364	2	6,50	5,11	5,56	5,72	3	-52,0	-40,9	-44,5	-45,8
8364	3	5,70	4,80	5,39	5,30	3	-45,6	-38,4	-43,1	-42,4
					4,96	9				
2805	1	2,70	2,15	2,65	2,50	2	-21,6	-17,2	-21,2	-20,0
2805	2	3,11	2,53	3,71	3,12	3	-24,9	-20,2	-29,7	-25,0
2805	3	3,26	2,59	3,26	3,04	3	-26,1	-20,7	-26,1	-24,3
					2,89	8				
4388	1	1,59	1,69	0,04	1,11	1	-12,7	-13,5	0,3	-8,7
4388	2	2,31	1,08	0,52	1,30	1	-18,4	-8,6	-4,2	-10,4
4388	3	2,06	1,76	2,35	2,06	2	-16,5	-14,1	-18,8	-16,5
					1,49	4				
7238	1	2,33	3,07	2,90	2,77	2	-18,6	-24,6	-23,2	-22,1
7238	2	4,73	3,97	3,23	3,98	3	-37,9	-31,8	-25,9	-31,8
7238	3	2,46	3,51	0,72	2,23	2	-19,7	-28,0	-5,8	-17,8
					2,99	7				
7323	1	3,43	2,50	2,39	2,77	2	-27,5	-20,0	-19,1	-22,2
7323	2	3,52	3,52	1,96	3,00	3	-28,2	-28,1	-15,7	-24,0
7323	3	3,36	4,04	3,77	3,72	3	-26,9	-32,3	-30,1	-29,8
					3,16	8				
Teilbereich	nicht bes	tanden	kriti	sch	Teilbere	eich besta	nden			


Tabelle 7

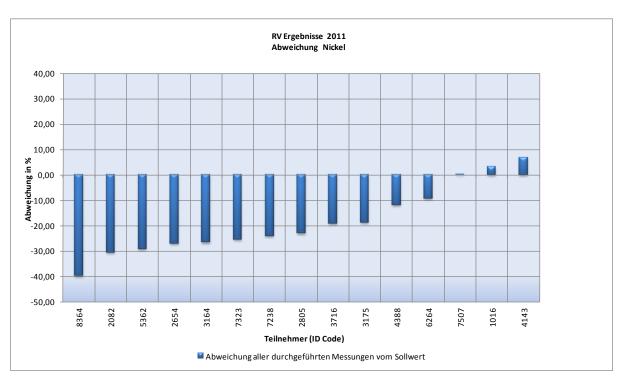
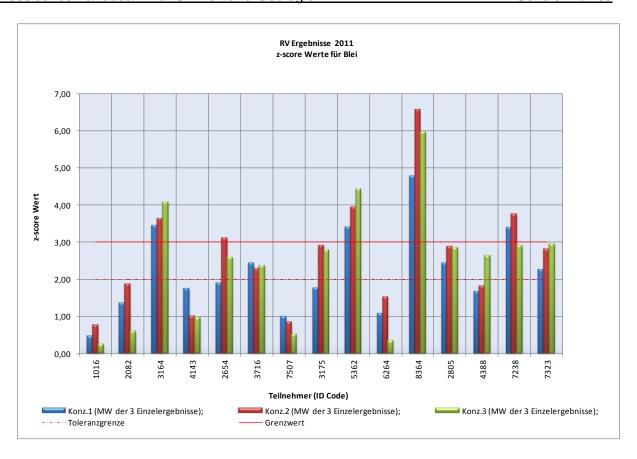


Bild 17

Bild 18


Bild 20

Ergebnistabelle für die Ermittlung von Blei

Teilnehmer	Konzen-	z-sco	ore Wert fü	r Blei	Sigma =	8,0%	re	lative Ab	weichnun	ıg (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1016	1	0,27	0,96	0,19	0,47	1	2,1	-7,7	-1,5	-2,3
1016	2	1,14	0,52	0,62	0,76	1	9,1	4,2	5,0	6,1
1016	3	0,67	0,00	0,08	0,25	1	-5,4	0,0	-0,6	-2,0
					0,49	3				
2082	1	1,04	0,35	2,67	1,35	1	8,3	2,8	21,4	10,8
2082	2	1,40	2,03	2,18	1,87	1	11,2	16,3	17,4	15,0
2082	3	1,07	0,68	0,03	0,59	1	8,5	-5,4	-0,3	0,9
					1,27	3				
3164	1	3,51	3,14	3,70	3,45	3	-28,1	-25,1	-29,6	-27,6
3164	2	3,36	3,60	3,92	3,63	3	-26,9	-28,8	-31,3	-29,0
3164	3	3,39	4,15	4,70	4,08	3	-27,1	-33,2	-37,6	-32,7
					3,72	9				
4143	1	1,93	2,53	0,80	1,75	1	15,5	20,2	6,4	14,0
4143	2	0,81	1,19	1,00	1,00	1	6,5	9,5	8,0	8,0
4143	3	0,64	0,55	1,69	0,96	1	5,1	4,4	13,5	7,7
					1,24	3				
2654	1	0,75	2,89	2,00	1,88	1	-6,0	-23,1	-16,0	-15,0
2654	2	3,99	2,05	3,30	3,11	3	-31,9	-16,4	-26,4	-24,9
2654	3	2,62	2,51	2,62	2,58	2	-21,0	-20,1	-21,0	-20,7
					2,52	6				
3716	1	3,30	2,59	1,37	2,42	2	-26,4	-20,7	-11,0	-19,4
3716	2	2,10	2,80	1,95	2,28	2	-16,8	-22,4	-15,6	-18,3
3716	3	1,68	3,04	2,40	2,37	2	-13,5	-24,4	-19,2	-19,0
					2,36	6				
7507	1	1,56	0,68	0,72	0,99	1	-12,5	5,5	5,8	-0,4
7507	2	1,39	0,96	0,15	0,83	1	-11,1	-7,7	1,2	-5,9
7507	3	1,24	0,00	0,28	0,51	1	-9,9	0,0	-2,2	-4,0
					0,78	3				
3175	1	1,17	2,13	1,99	1,76	1	-9,3	-17,0	-15,9	-14,1
3175	2	2,97	2,54	3,20	2,90	2	-23,8	-20,3	-25,6	-23,2
3175	3	3,95	2,93	1,44	2,77	2	-31,6	-23,5	-11,6	-22,2
					2,48	5				
5362	1	3,39	3,41	3,43	3,41	3	-27,1	-27,3	-27,4	-27,3
5362	2	4,82	3,51	3,49	3,94	3	-38,6	-28,1	-27,9	-31,5
5362	3	4,29	4,29	4,70	4,43	3	-34,3	-34,3	-37,6	-35,4
					3,93	9				

Teilnehmer	Konzen-	z-sco	ore Wert für	Blei	Sigma =	8,0%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert	
6264	1	1,06	1,06	1,11	1,08	1	-8,5	-8,5	-8,8	-8,6	
6264	2	2,21	1,14	1,21	1,52	1	-17,7	-9,1	-9,7	-12,2	
6264	3	0,49	0,35	0,15	0,33	1	-3,9	-2,8	-1,2	-2,6	
					0,98	3					
8364	1	4,56	5,34	4,42	4,77	3	-36,4	-42,7	-35,4	-38,2	
8364	2	7,49	5,88	6,32	6,56	3	-60,0	-47,0	-50,6	-52,5	
8364	3	6,24	5,34	6,30	5,96	3	-49,9	-42,7	-50,4	-47,7	
					5,76	9					
2805	1	2,52	1,96	2,82	2,43	2	-20,2	-15,7	-22,6	-19,5	
2805	2	2,93	2,24	3,44	2,87	2	-23,5	-17,9	-27,5	-23,0	
2805	3	2,89	2,28	3,37	2,85	2	-23,1	-18,2	-27,0	-22,8	
					2,72	6					
4388	1	2,22	2,24	0,53	1,66	1	-17,8	-17,9	-4,2	-13,3	
4388	2	2,82	1,61	1,00	1,81	1	-22,5	-12,9	-8,0	-14,5	
4388	3	2,64	2,30	2,93	2,62	2	-21,2	-18,4	-23,4	-21,0	
					2,03	4					
7238	1	3,17	3,69	3,32	3,39	3	-25,4	-29,5	-26,6	-27,2	
7238	2	4,50	3,68	3,09	3,76	3	-36,0	-29,4	-24,7	-30,1	
7238	3	2,77	4,04	1,89	2,90	2	-22,1	-32,3	-15,2	-23,2	
					3,35	8					
7323	1	3,29	2,13	1,33	2,25	2	-26,3	-17,0	-10,7	-18,0	
7323	2	3,72	3,64	1,08	2,81	2	-29,7	-29,1	-8,6	-22,5	
7323	3	3,08	3,34	2,39	2,94	2	-24,6	-26,7	-19,1	-23,5	
					2,67	6					
Teilbereich	nicht bes	tanden	kriti	sch	Teilbere	ich besta	nden				

Tabelle 8

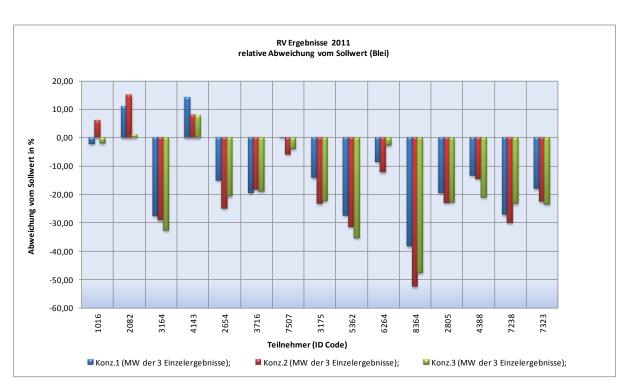
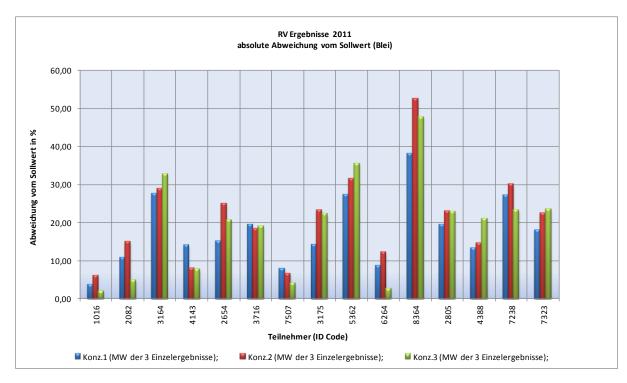
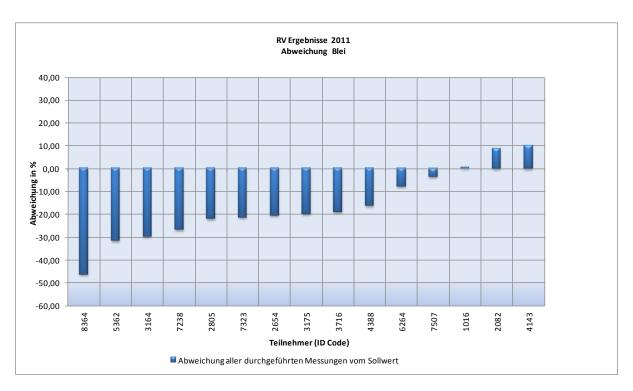
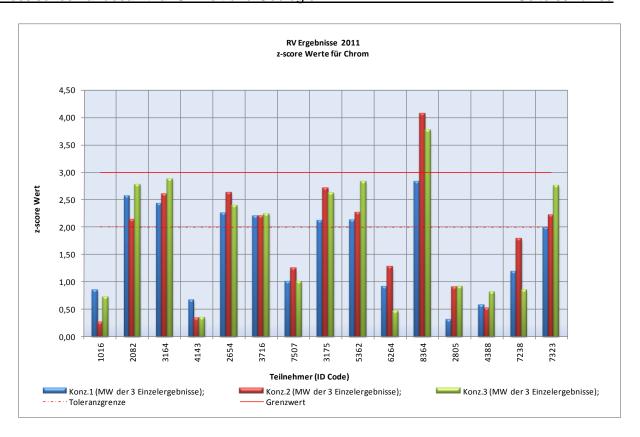




Bild 22


Bild 24

Ergebnistabelle für die Ermittlung von Chrom

Teilnehmer	Konzen-	z-scor	e Wert für (Chrom	Sigma =	12,0%	re	lative Ab	weichnun	ıg (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1016	1	0,53	1,24	0,76	0,84	1	-6,3	-14,9	-9,1	-10,1
1016	2	0,23	0,39	0,15	0,26	1	2,7	-4,7	-1,8	-1,3
1016	3	0,72	0,71	0,74	0,72	1	-8,6	-8,6	-8,9	-8,7
					0,61	3				
2082	1	2,57	2,94	2,16	2,56	2	-30,9	-35,3	-25,9	-30,7
2082	2	2,37	1,25	2,79	2,14	2	-28,4	-15,0	-33,5	-25,6
2082	3	2,36	3,12	2,86	2,78	2	-28,3	-37,5	-34,3	-33,3
					2,49	6				
3164	1	2,41	2,32	2,53	2,42	2	-29,0	-27,9	-30,3	-29,0
3164	2	2,37	2,56	2,88	2,60	2	-28,4	-30,8	-34,5	-31,2
3164	3	2,40	2,89	3,33	2,87	2	-28,8	-34,6	-39,9	-34,5
					2,63	6				
4143	1	0,52	0,81	0,66	0,66	1	6,2	9,7	-7,9	2,7
4143	2	0,40	0,13	0,47	0,33	1	-4,8	-1,6	-5,7	-4,0
4143	3	0,25	0,71	0,09	0,35	1	-3,0	-8,6	1,1	-3,5
					0,45	3				
2654	1	1,73	2,94	2,09	2,25	2	-20,8	-35,2	-25,1	-27,0
2654	2	3,34	2,18	2,36	2,63	2	-40,0	-26,1	-28,4	-31,5
2654	3	2,43	2,27	2,46	2,39	2	-29,2	-27,2	-29,5	-28,6
					2,42	6				
3716	1	2,65	2,31	1,65	2,20	2	-31,8	-27,7	-19,8	-26,4
3716	2	2,11	2,53	1,95	2,20	2	-25,3	-30,4	-23,4	-26,4
3716	3	1,88	2,62	2,21	2,24	2	-22,6	-31,5	-26,5	-26,8
					2,21	6				
7507	1	1,39	1,01	0,61	1,00	1	-16,7	-12,1	-7,3	-12,0
7507	2	1,50	1,18	1,06	1,25	1	-18,0	-14,2	-12,7	-14,9
7507	3	1,04	0,79	1,14	0,99	1	-12,5	-9,5	-13,7	-11,9
					1,08	3				
3175	1	2,09	2,08	2,17	2,11	2	-25,1	-24,9	-26,1	-25,4
3175	2	2,67	3,11	2,34	2,71	2	-32,1	-37,3	-28,1	-32,5
3175	3	2,71	2,77	2,36	2,61	2	-32,5	-33,3	-28,3	-31,4
					2,48	6				
5362	1	2,14	2,18	2,07	2,13	2	-25,7	-26,2	-24,8	-25,5
5362	2	2,96	1,89	1,94	2,26	2	-35,6	-22,7	-23,3	-27,2
5362	3	2,65	2,81	2,99	2,82	2	-31,8	-33,8	-35,9	-33,8
					2,40	6				

Teilnehmer	Konzen-	z-scor	e Wert für (Chrom	Sigma =	12,0%	relative Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
6264	1	0,94	0,87	0,92	0,91	1	-11,3	-10,4	-11,0	-10,9
6264	2	1,80	0,97	1,03	1,27	1	-21,6	-11,6	-12,4	-15,2
6264	3	0,67	0,46	0,26	0,46	1	-8,1	-5,5	-3,1	-5,6
					0,88	3				
8364	1	2,74	3,14	2,59	2,82	2	-32,9	-37,7	-31,1	-33,9
8364	2	4,61	3,57	4,01	4,06	3	-55,4	-42,8	-48,2	-48,8
8364	3	3,95	3,33	4,02	3,77	3	-47,4	-39,9	-48,3	-45,2
					3,55	8				
2805	1	0,22	0,36	0,36	0,31	1	-2,6	4,3	-4,3	-0,9
2805	2	0,96	0,62	1,12	0,90	1	-11,6	-7,5	-13,4	-10,8
2805	3	0,94	0,58	1,22	0,91	1	-11,3	-6,9	-14,6	-10,9
					0,71	3				
4388	1	0,12	0,45	1,14	0,57	1	-1,5	-5,4	13,6	2,3
4388	2	0,96	0,15	0,44	0,52	1	-11,6	-1,8	5,2	-2,7
4388	3	0,79	0,65	0,98	0,81	1	-9,4	-7,8	-11,8	-9,7
					0,63	3				
7238	1	0,89	1,70	0,96	1,18	1	-10,7	-20,4	-11,5	-14,2
7238	2	1,85	1,81	1,68	1,78	1	-22,1	-21,7	-20,1	-21,3
7238	3	0,67	1,71	0,15	0,84	1	-8,0	-20,5	-1,8	-10,1
					1,27	3				
7323	1	2,61	1,88	1,46	1,98	1	-31,3	-22,6	-17,5	-23,8
7323	2	2,79	2,34	1,49	2,21	2	-33,5	-28,1	-17,9	-26,5
7323	3	2,58	2,95	2,72	2,75	2	-30,9	-35,4	-32,6	-33,0
					2,31	5				
Teilbereich nicht bestanden kritisch					Teilbere	ich besta	anden			

Tabelle 9

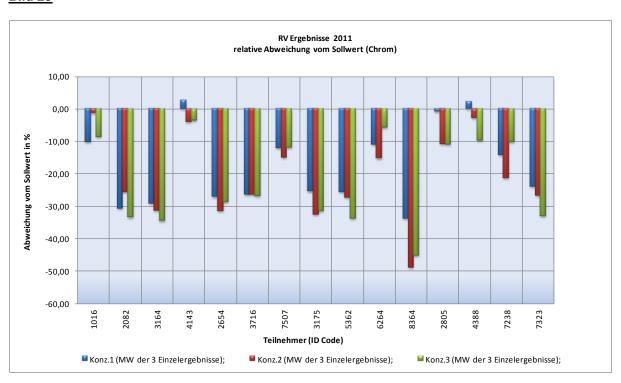
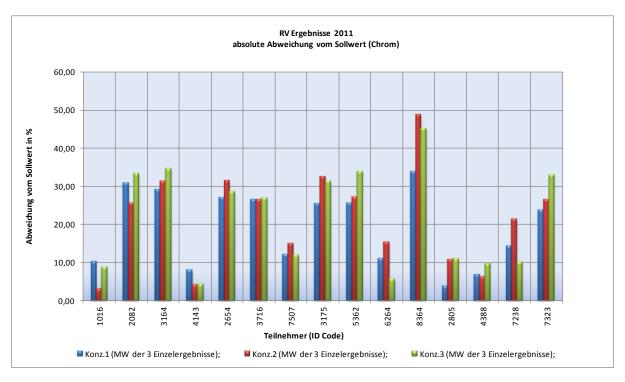
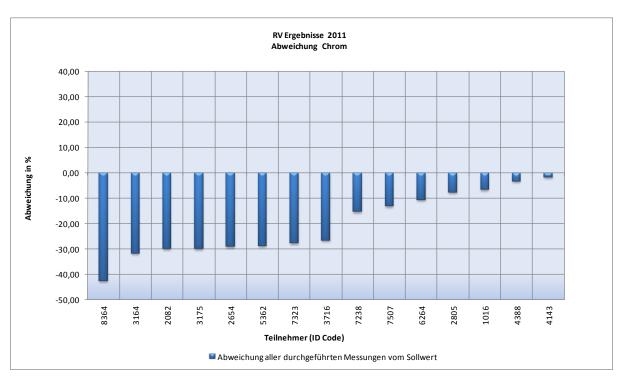




Bild 26

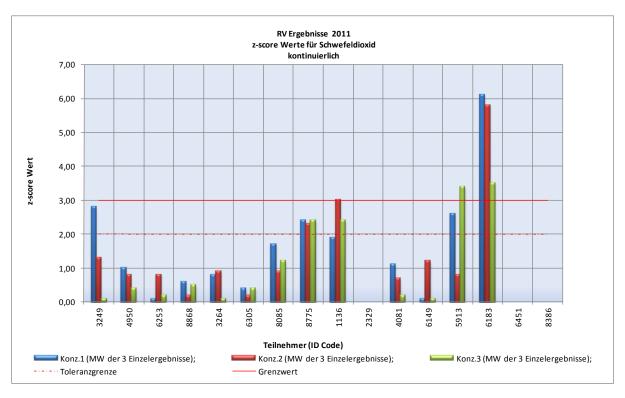
Bild 28

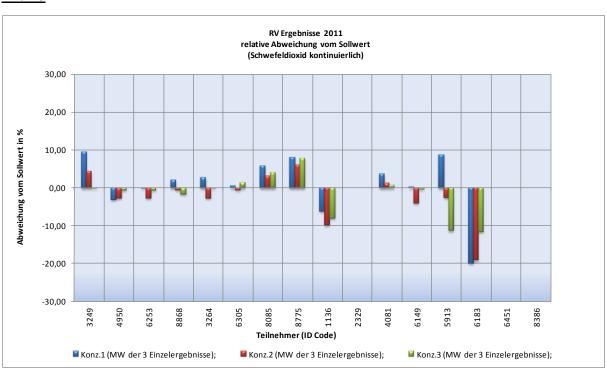
4.2 Anorganische Gase / organische Verbindungen

Im Berichtszeitraum wurden 4 Ringversuche für "Anorganische Gase / organische Verbindungen" mit insgesamt 16 Teilnehmern durchgeführt. Diese setzten sich zusammen aus 14 nach § 26 BlmSchG bekannt gegebenen Stellen sowie zwei internationaler Einrichtungen, die freiwillig an Emissionsringversuchen teilnahmen.

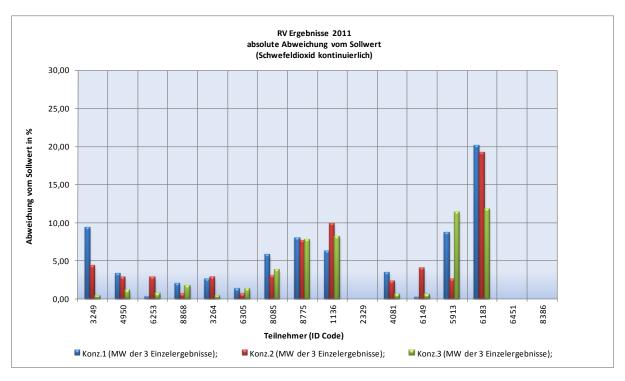
Bezeichnung des Ringversuches	Termin	Gegenstand der Untersuchung
RV 238	24. – 27.01.2011	gasförmige Stoffe
RV 239	07. – 10.02.2011	gasförmige Stoffe
RV 240	28.02. – 03.03.2011	gasförmige Stoffe
RV 244	19. – 22.09.2011	gasförmige Stoffe

Tabelle 10


Folgende Ergebnisse wurden erzielt:


Ergebnistabelle für Schwefeldioxid (SO₂) kontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score	Wert für S	O2 kont.	Sigma =	3,3%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert	
3249	1	2,9	2,7	2,7	2,8	2	9,7	9,0	9,0	9,3	
3249	2	1,2	1,1	1,7	1,3	1	3,8	3,6	5,5	4,3	
3249	3	0,0	0,2	0,1	0,1	1	-0,1	0,5	-0,4	0,0	
	-	-,-	- ,	- ,	1,4	4		- , -		-,-	
4950	1	0,9	1,0	1,0	1,0	1	-2,8	-3,4	-3,4	-3,2	
4950	2	0,8	0,8	0,9	0,8	1	-2,5	-2,7	-3,0	-2,7	
4950	3	0,7	0,2	0,2	0,4	1	-2,2	-0,5	0,6	-0,7	
					0,7	3					
6253	1	0,1	0,1	0,1	0,1	1	0,3	-0,3	-0,3	-0,1	
6253	2	0,8	0,8	0,9	0,8	1	-2,5	-2,7	-3,0	-2,7	
6253	3	0,4	0,2	0,1	0,2	1	-1,2	-0,5	-0,4	-0,7	
						3					
8868	1	0,1	0,8	0,8	0,6	1	0,3	2,8	2,8	2,0	
8868	2	0,1	0,2	0,3	0,2	1	-0,4	-0,6	-0,8	-0,6	
8868	3	0,7	0,5	0,4	0,5	1	-2,2	-1,6	-1,5	-1,7	
					0,4	3					
3264	1	0,8	0,8	0,8	0,8	1	2,6	2,6	2,6	2,6	
3264	2	0,8	0,9	0,9	0,9	1	-2,6	-3,0	-2,8	-2,8	
3264	3	0,2	0,0	0,1	0,1	1	-0,8	0,1	0,2	-0,1	
					0,6	3					
6305	1	0,2	0,2	0,8	0,4	1	-0,6	-0,6	2,6	0,4	
6305	2	0,1	0,3	0,2	0,2	1	-0,4	-0,9	-0,6	-0,6	
6305	3	0,4	0,4	0,4	0,4	1	1,4	1,2	1,3	1,3	
					0,3	3					
8085	1	1,7	1,7	1,7	1,7	1	5,8	5,8	5,8	5,8	
8085	2	0,5	1,0	1,1	0,9	1	1,7	3,4	3,7	3,0	
8085	3	1,1	1,0	1,4	1,2	1	3,6	3,3	4,5	3,8	
					1,3	3					
8775	1	3,7	2,7	0,8	2,4	2	12,2	12,2	9,0	2,6	
8775	2	0,8	3,0	3,1	2,3	2	-2,6	-2,6	9,9	10,2	
8775	3	0,8	2,3	4,0	2,4	2	2,5	2,5	7,6	13,1	
					2,4	6					
1136	1	1,9	1,9	2,0	1,9	1	-6,1	-6,1	-6,5	-6,2	
1136	2	3,2	3,2	2,6	3,0	3	-10,5	-10,5	-8,5	-9,8	
1136	3	2,6	2,3	2,4	2,4	2	-8,7	-7,7	-7,9	-8,1	
					2,4	6					


Teilnehmer	Konzen-	z-score	Wert für S	602 kont.	Sigma = 3	3,3%	relative Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse		Wert 3.	Wert M	ittelwert
2329	1	ke	ine T	eilnah	me					
2329	2									
2329	3									
4081	1	1,1	1,1	1,0	1,1	1	3,6	3,6	3,2	3,4
4081	2	0,5	0,8	0,7	0,7	1	-1,7	2,6	2,4	1,1
4081	3	0,0	0,3	0,2	0,2	1	0,0	1,0	0,8	0,6
				•	0,7	3	·		,	·
6149	1	0,1	0,1	0,0	0,1	1	0,3	0,3	0,0	0,2
6149	2	1,9	1,2	0,6	1,2	1	-6,1	-3,9	-2,0	-4,0
6149	3	0,3	0,0	0,1	0,1	1	-1,1	-0,1	-0,3	-0,5
			-		0,5	3				
5913	1	3,3	2,3	2,2	2,6	2	10,8	7,7	7,4	8,6
5913	2	0,7	0,8	0,9	0,8	1	-2,3	-2,5	-2,9	-2,6
5913	3	3,7	3,4	3,2	3,4	3	-12,3	-11,3	-10,4	-11,3
					2,3	6				
6183	1	6,1	6,1	6,1	6,1	3	-20,0	-20,0	-20,2	-20,1
6183	2	6,4	5,8	5,3	5,8	3	-21,0	-19,1	-17,4	-19,1
6183	3	4,0	3,4	3,2	3,5	3	-13,3	-11,3	-10,4	-11,7
					5,1	9				
6451	1		· T	- : ! !-						
6451	2	ке	ine i	eilnah	me					
6451	3									
8386	1	keine Teilnah			me					
8386	2	keine reiman								
8386	3									
Teilbe	Teilbereich nicht bestanden		krit	isch	Teilber	eich bes	tanden			

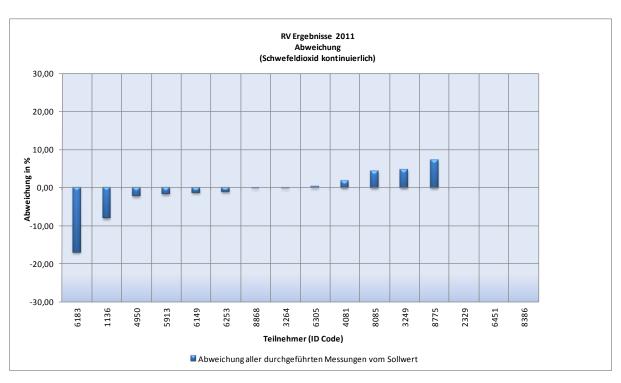
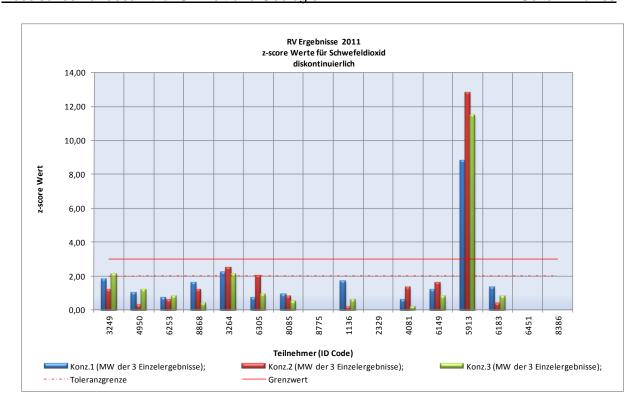
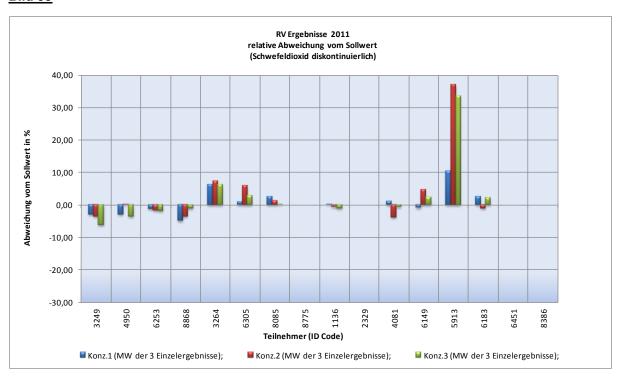
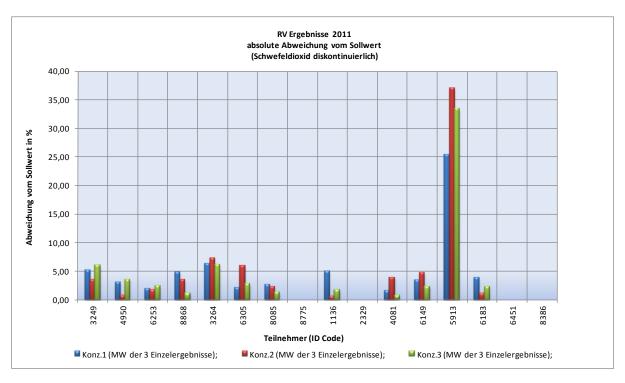

Tabelle 11

Bild 30


Bild 32


Ergebnistabelle für Schwefeldioxid (SO₂) diskontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score	Wert für	SO ₂ diskont.	Sigma =	2,9%	re	lative Ab	weichnun	ıg (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
3249	1	1,6	2,6	1,1	1,8	1	-5	-7	3	-3
3249	2	2,0	1,4	0,2	1,2	1	-6	-4	-1	-4
3249	3	1,9	2,4	2,0	2,1	2	-5	-7	-6	-6
					1,7	4				
4950	1	0,7	0,7	1,6	1,0	1	-2	-2	-5	-3
4950	2	0,1	0,5	0,2	0,3	1	0	2	-1	0
4950	3	1,0	1,9	0,7	1,2	1	-3	-6	-2	-4
					0,8	3				
6253	1	0,2	1,6	0,2	0,7	1	1	-5	1	-1
6253	2	0,1	0,8	0,8	0,6	1	0	-2	-2	-2
6253	3	0,3	0,6	1,5	0,8	1	1	-2	-4	-2
						3				
8868	1	2,6	1,6	0,7	1,6	1	-7	-5	-2	-5
8868	2	1,4	1,4	0,8	1,2	1	-4	-4	-2	-4
8868	3	0,6	0,2	0,3	0,4	1	-2	-1	-1	-1
					1,1	3				
3264	1	3,1	1,2	2,2	2,2	2	9	4	6	6
3264	2	1,7	2,2	3,5	2,5	2	5	6	10	7
3264	3	2,2	1,7	2,5	2,1	2	6	5	7	6
					2,3	6				
6305	1	1,2	0,7	0,3	0,7	1	4	-2	1	1
6305	2	1,7	1,5	2,8	2,0	1	5	4	8	6
6305	3	0,9	0,8	1,1	0,9	1	3	2	3	3
					1,2	3				
8085	1	1,2	1,2	0,3	0,9	1	4	4	1	3
8085	2	0,4	0,5	1,5	0,8	1	1	-1	4	1
8085	3	0,4	0,8	0,2	0,5	1	-1	2	-1	0
					0,7	3				
8775	1		ain	e Teil	nahr					
8775	2		Cenn	e ren	. iai III					
8775	3									
1136	1	1,2	1,2	2,6	1,7	1	-4	-4	7	0
1136	2	0,5	0,0	0,1	0,2	1	-2	0	0	-1
1136	3	1,3	0,1	0,3	0,6	1	-4	0	1	-1
					0,8	3				


Teilnehmer	Konzen-	z-score \	Wert für So	O ₂ diskont.	Sigma = 2	2,9%	relative Abweichnung (%)			
Nr.	tration	1. Wert 2	2. Wert	3. Wert	Mittelwert	Klasse		Wert 3.	Wert M	littelwert
2329	1	ke	ine Ta	eilnahı	me					
2329	2									
2329	3									
4081	1	0,7	0,3	0,7	0,6	1	2	-1	2	1
4081	2	1,9	1,4	0,7	1,3	1	-6	-4	-2	-4
4081	3	0,4	0,1	0,2	0,2	1	-1	0	-1	-1
					0,7	3				
6149	1	0,7	0,7	2,2	1,2	1	2	2	-6	-1
6149	2	1,5	1,4	2,0	1,6	1	4	4	6	5
6149	3	0,4	0,8	1,2	0,8	1	1	2	3	2
					1,2	3				
5913	1	11,0	7,8	7,5	8,8	3	32	-22	22	10
5913	2	12,7	12,6	13,0	12,8	3	37	37	38	37
5913	3	7,7	15,0	11,9	11,5	3	22	43	35	33
					11,0	9				
6183	1	0,6	2,0	1,3	1,3	1	-2	6	4	3
6183	2	0,7	0,1	0,3	0,4	1	-2	0	-1	-1
6183	3	1,4	0,3	0,6	0,8	1	4	1	2	2
					0,8	3				
6451	1	ko	ina Ta	eilnahı	ma					
6451	2	Re	me re	siiiiaiii	III E					
6451	3									
8386	1	keine Teilnah			ne					
8386	2	Keine reimain								
8386	3									
Teilbe	Teilbereich nicht bestanden		krit	isch	Teilbei	reich bes	tanden			

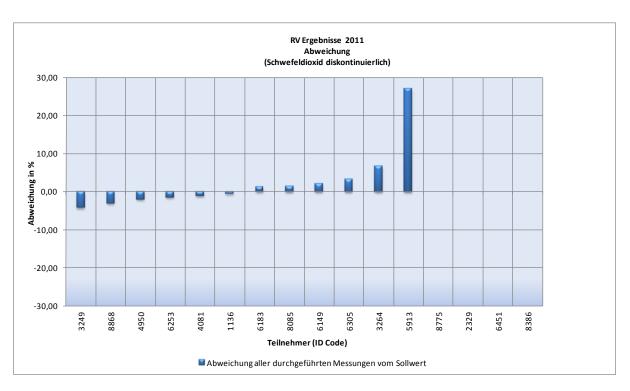

Tabelle 12

Bild 34

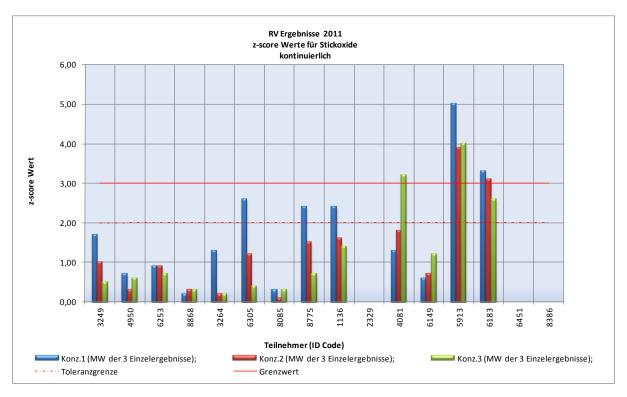
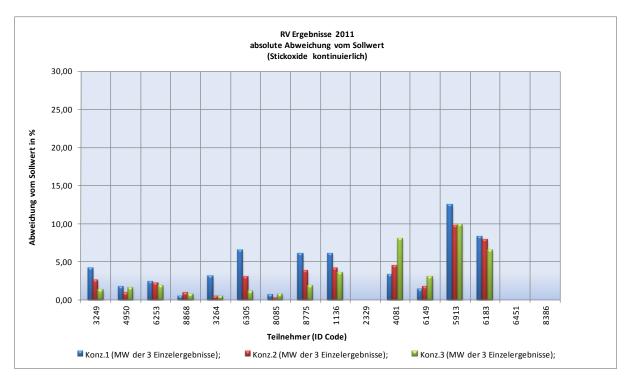


Bild 36

Ergebnistabelle für Stickoxide angegeben als NO₂ kontinuierliche Ermittlung


Teilnehmer	Konzen-	7-SCOTA	Wert für N	O _v kont	Sigma =	2,5%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse		2. Wert		Mittelwert	
3249	1	1,6	1,7	1,7	1,7	1	-4,1	-4,2	-4,3	-4,2	
3249	2	0,9	1,7	1,7	1,7	1	-2,3	- 4 ,2 -2,6	- 4 ,3 -2,6	-4,2 -2,5	
3249	3	0,9		0,5		1			-2,6 -1,2	-	
3249	3	0,5	0,6	0,5	0,5		-1,2	-1,4	-1,2	-1,3	
4050	4	0.0	0.7	0.7	1,1	3	4.0	4 7	4.0	4.7	
4950	1	0,6	0,7	0,7	0,7	1	-1,6	-1,7	-1,8	-1,7	
4950	2	0,4	0,3	0,3	0,3	1	-1,1	-0,8	-0,7	-0,9	
4950	3	0,6	0,7	0,6	0,6	1	-1,5	-1,7	-1,5	-1,6	
					0,5	3					
6253	1	0,8	0,8	1,2	0,9	1	2,1	2,0	3,1	2,4	
6253	2	0,8	0,9	0,9	0,9	1	2,0	2,3	2,3	2,2	
6253	3	0,7	0,7	0,8	0,7	1	1,9	1,7	1,9	1,8	
						3					
8868	1	0,1	0,2	0,2	0,2	1	-0,4	-0,5	0,6	-0,1	
8868	2	0,4	0,3	0,3	0,3	1	-1,1	-0,8	-0,7	-0,9	
8868	3	0,1	0,3	0,5	0,3	1	-0,3	-0,8	-1,2	-0,8	
					0,3	3					
3264	1	1,3	1,2	1,3	1,3	1	3,3	2,9	3,1	3,1	
3264	2	0,2	0,2	0,2	0,2	1	-0,5	-0,4	-0,4	-0,4	
3264	3	0,1	0,2	0,3	0,2	1	-0,2	-0,5	-0,6	-0,4	
					0,6	3					
6305	1	2,3	2,7	2,8	2,6	2	5,8	6,6	6,9	6,5	
6305	2	1,1	1,3	1,1	1,2	1	2,7	3,4	2,8	2,9	
6305	3	0,6	0,4	0,3	0,4	1	1,4	1,1	0,6	1,1	
					1,4	4					
8085	1	0,2	0,4	0,3	0,3	1	-0,5	-0,9	-0,6	-0,7	
8085	2	0,1	0,1	0,2	0,1	1	0,1	0,2	-0,4	0,0	
8085	3	0,3	0,3	0,3	0,3	1	-0,8	-0,8	-0,6	-0,7	
					0,2	3					
8775	1	1,8	2,7	2,8	2,4	2	0,0	4,5	6,6	6,9	
8775	2	0,6	1,9	2,1	1,5	1	0,0	1,4	4,6	5,3	
8775	3	1,0	0,2	1,0	0,7	1	0,0	-2,4	0,5	2,5	
					1,5	4					
1136	1	2,4	2,4	2,4	2,4	2	-6,0	-6,1	-6,1	-6,1	
1136	2	1,5	1,5	1,8	1,6	1	-3,8	-3,8	-4,6	-4,1	
1136	3	1,5	1,4	1,3	1,4	1	-3,8	-3,5	-3,3	-3,5	
					1,8	4					

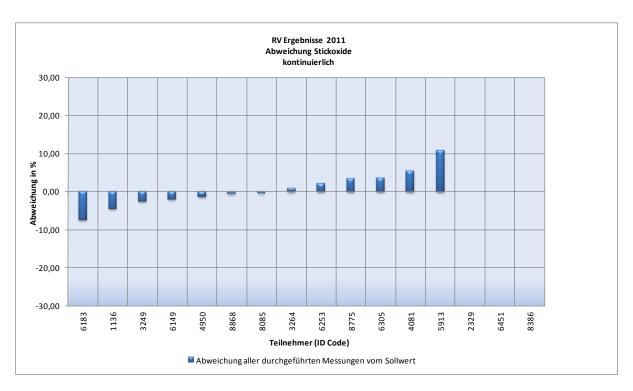
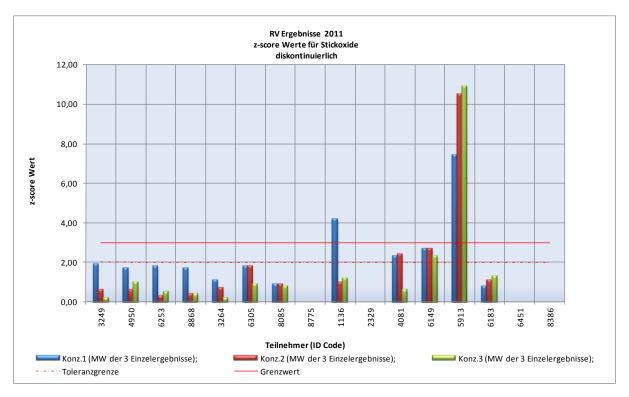
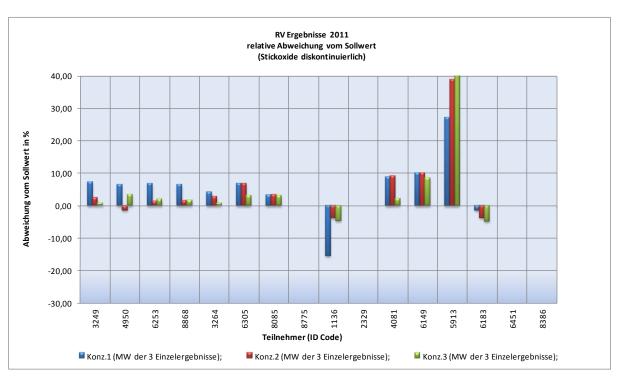
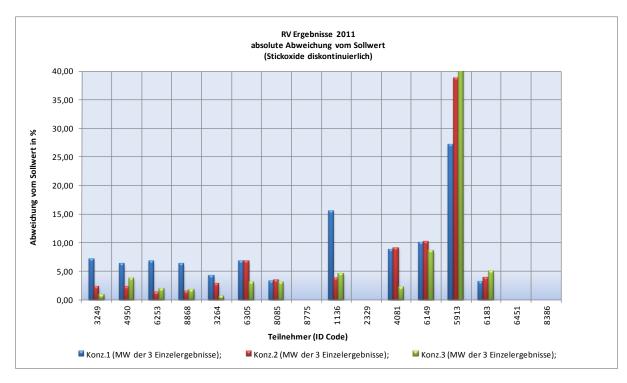

Teilnehmer	Konzen-	z-score	Wert für N	NO _x kont.	Sigma = 2	2,5%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse		Wert 3.	Wert M	littelwert	
2329	1	kei	ne Teil	lnahme							
2329	2										
2329	3										
4081	1	1,2	1,1	1,6	1,3	1	2,9	2,8	4,1	3,3	
4081	2	1,8	1,8	1,7	1,8	1	4,5	4,5	4,4	4,4	
4081	3	3,1	3,2	3,3	3,2	3	7,7	8,0	8,2	8,0	
					2,1	5					
6149	1	0,4	0,9	0,4	0,6	1	-0,9	-2,3	-1,0	-1,4	
6149	2	0,5	0,8	0,8	0,7	1	-1,3	-1,9	-2,0	-1,8	
6149	3	1,3	1,1	1,2	1,2	1	-3,2	-2,8	-2,9	-3,0	
					0,8	3					
5913	1	5,0	5,0	4,9	5,0	3	12,5	12,6	12,3	12,5	
5913	2	3,8	3,9	4,0	3,9	3	9,4	9,7	10,1	9,7	
5913	3	3,7	4,1	4,1	4,0	3	9,2	10,1	10,2	9,8	
					4,3	9					
6183	1	3,3	3,3	3,4	3,3	3	-8,3	-8,2	-8,4	-8,3	
6183	2	3,2	3,1	3,1	3,1	3	-8,0	-7,6	-7,9	-7,8	
6183	3	2,6	2,6	2,5	2,6	2	-6,6	-6,6	-6,2	-6,5	
					3,0	8					
6451	1	kei	ne Teil	nahme							
6451	2										
6451	3										
8386	1	lant.	- T-!!	m = le =							
8386	2	кег	ne ren	Inahme							
8386	3										
Teilhe	reich nich	t hestand	en	krit	isch	Teilhe	reich bes	tanden			

Bild 38


Bild 40


Ergebnistabelle für Stickoxide angegeben als NO₂ diskontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score	Wert für	NO _X diskont.	Sigma =	3,7%	re	lative Ab	weichnun	ıa (%)
Nr.	tration	1. Wert		3. Wert	Mittelwert	Klasse	ĺ	2. Wert		Mittelwert
3249	1	1,9	1,6	2,3	1,9	1	7,1	5,9	8,4	7,1
3249	2	0,3	0,7	0,8	0,6	1	1,0	2,7	3,1	2,3
3249	3	0,4	0,0	0,2	0,2	1	1,6	-0,2	0,9	0,7
		3, .	0,0	<u> </u>	0,9	3	.,0	5,2	5,5	0,1
4950	1	1,6	1,9	1,6	1,7	1	5,9	7,1	5,9	6,3
4950	2	0,8	0,7	0,4	0,6	1	-3,1	-2,6	1,3	-1,5
4950	3	1,1	1,8	0,1	1,0	1	4,0	6,6	-0,5	3,4
					1,1	3				
6253	1	1,6	2,3	1,6	1,8	1	5,9	8,4	5,9	6,7
6253	2	0,1	0,4	0,5	0,3	1	0,4	1,5	1,9	1,3
6253	3	0,8	0,2	0,5	0,5	1	2,9	0,9	1,9	1,9
						3				
8868	1	2,3	1,2	1,6	1,7	1	8,4	4,6	5,9	6,3
8868	2	1,1	0,1	0,0	0,4	1	4,0	0,4	0,1	1,5
8868	3	0,3	0,1	0,9	0,4	1	1,2	0,5	3,2	1,7
					0,8	3				
3264	1	0,6	1,0	1,7	1,1	1	2,3	3,8	6,4	4,1
3264	2	0,4	1,4	0,4	0,7	1	1,6	5,3	1,5	2,8
3264	3	0,1	0,2	0,2	0,2	1	0,3	0,8	0,7	0,6
					0,7	3				
6305	1	1,7	2,1	1,7	1,8	1	6,2	7,7	6,4	6,7
6305	2	1,1	1,9	2,5	1,8	1	4,0	7,1	9,3	6,8
6305	3	0,6	1,1	0,9	0,9	1	2,0	4,0	3,1	3,1
					1,5	3				
8085	1	0,3	1,4	1,0	0,9	1	1,0	5,1	3,8	3,3
8085	2	0,4	0,8	1,5	0,9	1	1,6	2,9	5,7	3,4
8085	3	0,8	0,6	1,0	0,8	1	3,1	2,2	3,8	3,1
					0,9	3				
8775	1				keine Teilı	nahme				
8775	2									
8775	3									
4420	4	4.0	<i></i>	0.0	4.0		45.0	40.7	40.7	45.4
1136	1	4,3	5,3	2,9	4,2	3	-15,9	-19,7	-10,7	-15,4
1136	2	0,3	1,8	1,0	1,0	1	-1,0	-6,5	-3,7	-3,7
1136	3	1,7	1,3	0,7	1,2	1	-6,2	-4,7	-2,7	-4,5
					2,1	5				


Tabelle 14

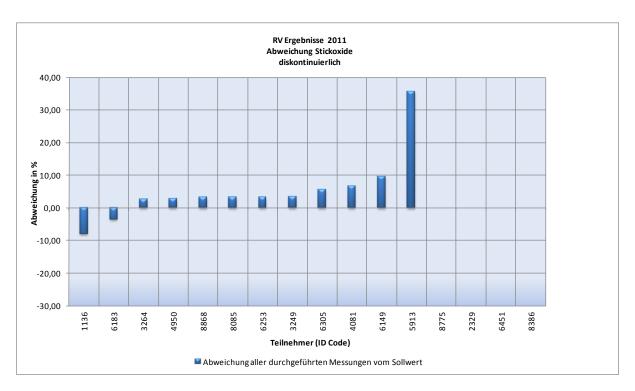
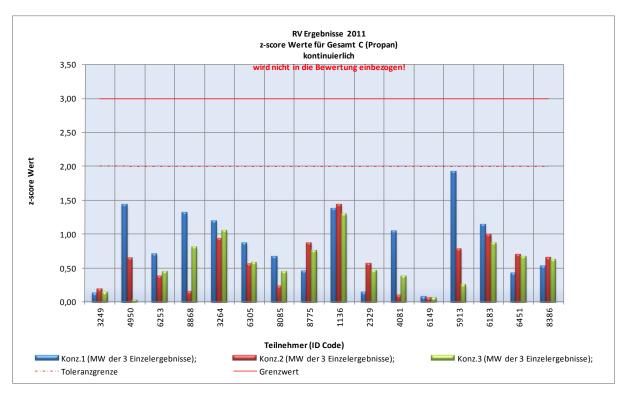
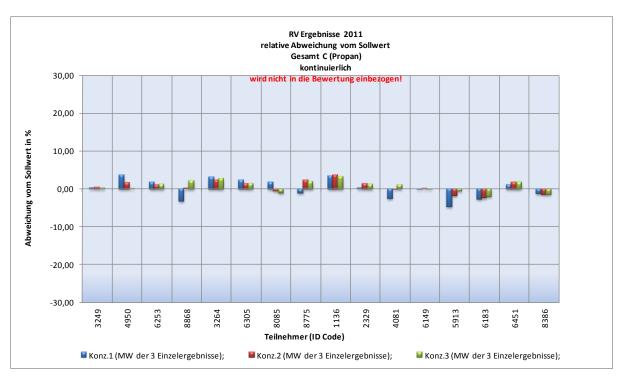

Teilnehmer	Konzen-	z-score W	z-score Wert für NO _X diskont.			3,7%	rela	relative Abweichnung (%)			
Nr.	tration	1. Wert 2	. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert 3.	Wert Mi	ttelwert	
2329	1	kai	ne Tei	Inahm							
2329	2	Kei	ne rei								
2329	3										
4081	1	3,0	2,7	1,3	2,3	2	11,3	10,1	4,8	8,7	
4081	2	2,5	2,1	2,7	2,4	2	9,2	7,8	10,1	9,0	
4081	3	0,4	0,6	0,8	0,6	1	1,5	2,2	2,8	2,1	
					1,8	5					
6149	1	2,3	2,7	3,0	2,7	2	8,7	10,1	11,3	10,0	
6149	2	3,0	2,6	2,6	2,7	2	11,0	9,6	9,5	10,0	
6149	3	1,0	3,9	2,0	2,3	2	3,9	14,3	7,3	8,5	
					2,6	6					
5913	1	7,7	6,0	8,4	7,4	3	28,4	22,0	31,1	27,2	
5913	2	10,7	10,9	9,8	10,5	3	39,6	40,5	36,3	38,8	
5913	3	11,2	11,5	10,1	10,9	3	41,5	42,7	37,4	40,5	
					9,6	9					
6183	1	0,7	1,1	0,6	0,8	1	-2,7	-4,1	2,4	-1,5	
6183	2	1,3	1,4	0,5	1,1	1	-4,8	-5,0	-1,8	-3,9	
6183	3	1,5	1,5	1,0	1,3	1	-5,5	-5,6	-3,6	-4,9	
					1,1	3					
6451	1	koja	a Taile	nahme							
6451	2	Kell	ie reili	папппе							
6451	3										
					_						
8386	1	koi	no Toi	Inabes	_						
8386	2	keine Teilnahm			6						
8386	3										
Teilbe	reich nich	t bestande	en	kri	tisch	Teilb	ereich be	standen			

Bild 42

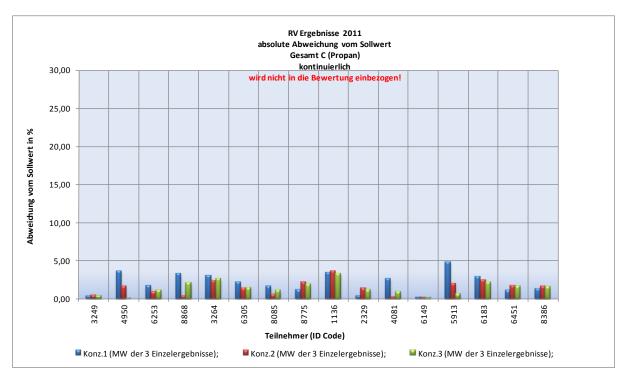
Bild 44

Ergebnistabelle für Propan angegeben als Gesamt-Kohlenstoff kontinuierliche Ermittlung


(wird nicht in die Bewertung einbezogen!)


Teilnehmer	Konzen-	z-score W	lert für C (P	ropan) kont.	Sigma =	2,5%	relative Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
3249	1	0,23	0,09	0,08	0,13	1	0,6	0,2	0,2	0,3
3249	2	0,13	0,22	0,22	0,19	1	0,3	0,6	0,6	0,5
3249	3	0,23	0,09	0,09	0,14	1	0,6	0,2	0,2	0,3
					0,15	3				
4950	1	1,48	1,49	1,32	1,43	1	3,7	3,7	3,3	3,6
4950	2	0,69	0,62	0,62	0,64	1	1,7	1,5	1,5	1,6
4950	3	0,05	0,00	0,04	0,03	1	0,1	0,0	-0,1	0,0
					0,70	3				
6253	1	0,70	0,87	0,54	0,70	1	1,7	2,2	1,4	1,8
6253	2	0,37	0,38	0,38	0,38	1	0,9	0,9	0,9	0,9
6253	3	0,41	0,45	0,46	0,44	1	1,0	1,1	1,1	1,1
						3				
8868	1	0,85	1,61	1,47	1,31	1	-2,1	-4,0	-3,7	-3,3
8868	2	0,13	0,22	0,09	0,15	1	0,3	0,6	-0,2	0,2
8868	3	0,77	0,81	0,86	0,81	1	1,9	2,0	2,2	2,0
					0,76	3				
3264	1	1,21	1,11	1,26	1,19	1	3,0	2,8	3,1	3,0
3264	2	0,94	0,89	0,95	0,93	1	2,4	2,2	2,4	2,3
3264	3	1,00	1,03	1,11	1,05	1	2,5	2,6	2,8	2,6
					1,06	3				
6305	1	0,89	0,79	0,94	0,87	1	2,2	2,0	2,3	2,2
6305	2	0,62	0,48	0,54	0,55	1	1,6	1,2	1,4	1,4
6305	3	0,53	0,57	0,60	0,57	1	1,3	1,4	1,5	1,4
					0,66	3				
8085	1	0,73	0,63	0,62	0,66	1	1,8	1,6	1,6	1,7
8085	2	0,19	0,24	0,27	0,23	1	-0,5	-0,6	-0,7	-0,6
8085	3	0,49	0,46	0,38	0,44	1	-1,2	-1,1	-0,9	-1,1
					0,44	3				
8775	1	0,38	0,48	0,49	0,45	1	0,0	-1,0	-1,2	-1,2
8775	2	0,94	0,89	0,78	0,87	1	0,0	2,4	2,2	2,0
8775	3	0,76	0,71	0,79	0,75	1	0,0	1,9	1,8	2,0
					0,69	3				

(wird nicht in die Bewertung einbezogen!)


Teilnehmer	Konzen-	z-score W	lert für C (P	ropan) kont.	Sigma =	2,5%	relative Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1136	1	1,40	1,36	1,35	1,37	1	3,5	3,4	3,4	3,4
1136	2	1,55	1,42	1,32	1,43	1	3,9	3,6	3,3	3,6
1136	3	1,20	1,28	1,38	1,29	1	3,0	3,2	3,4	3,2
					1,36	3				
2329	1	0,27	0,08	0,06	0,14	1	0,7	0,2	0,2	0,3
2329	2	0,65	0,61	0,42	0,56	1	1,6	1,5	1,0	1,4
2329	3	0,40	0,48	0,49	0,46	1	1,0	1,2	1,2	1,1
					0,39	3				
4081	1	1,01	1,04	1,06	1,04	1	-2,5	-2,6	-2,6	-2,6
4081	2	0,25	0,05	0,01	0,10	1	-0,6	-0,1	0,0	-0,2
4081	3	0,36	0,38	0,39	0,38	1	0,9	1,0	1,0	0,9
					0,51	3				
6149	1	0,05	0,08	0,10	0,08	1	-0,1	-0,2	-0,2	-0,2
6149	2	0,07	0,03	0,07	0,06	1	0,2	0,1	-0,2	0,0
6149	3	0,11	0,04	0,03	0,06	1	-0,3	-0,1	-0,1	-0,1
					0,07	3				
5913	1	1,99	1,90	1,87	1,92	1	-5,0	-4,8	-4,7	-4,8
5913	2	0,78	0,68	0,89	0,78	1	-1,9	-1,7	-2,2	-2,0
5913	3	0,25	0,29	0,21	0,25	1	-0,6	-0,7	-0,5	-0,6
					0,98	3				
6183	1	1,21	1,12	1,09	1,14	1	-3,0	-2,8	-2,7	-2,9
6183	2	1,02	0,99	0,97	0,99	1	-2,5	-2,5	-2,4	-2,5
6183	3	0,92	0,88	0,80	0,87	1	-2,3	-2,2	-2,0	-2,2
					1,00	3				
6451	1	0,34	0,44	0,47	0,42	1	0,9	1,1	1,2	1,0
6451	2	0,72	0,66	0,68	0,69	1	1,8	1,7	1,7	1,7
6451	3	0,65	0,65	0,69	0,66	1	1,6	1,6	1,7	1,7
					0,59	3				
8386	1	0,59	0,50	0,47	0,52	1	-1,5	-1,2	-1,2	-1,3
8386	2	0,70	0,68	0,57	0,65	1	-1,8	-1,7	-1,4	-1,6
8386	3	0,65	0,65	0,57	0,62	1	-1,6	-1,6	-1,4	-1,6
					0,60	3			<u> </u>	
Teilbe	Teilbereich nicht bestanden			kritis	sch	Teilber	eich bes	tanden		

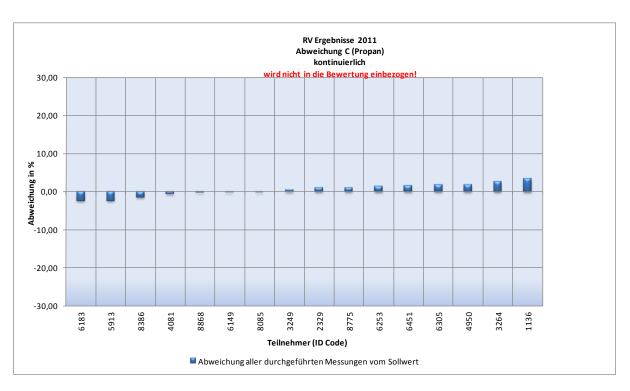
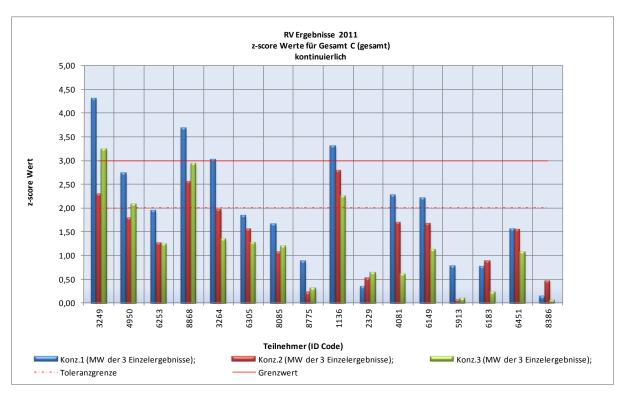

Tabelle 15

Bild 46

Bild 48


Ergebnistabelle für Toluol, Ethylbenzol, Summe Xylole und Propan

angegeben als Gesamt-Kohlenstoff kontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score W	lert für C (g	esamt) kont.	Sigma =	2,5%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert	
3249	1	4,29	4,33	4,29	4,30	3	10,7	10,8	10,7	10,8	
3249	2	2,41	2,27	2,20	2,29	2	6,0	5,7	5,5	5,7	
3249	3	3,05	3,26	3,38	3,23	3	7,6	8,2	8,4	8,1	
					3,27	8					
4950	1	2,86	2,74	2,60	2,73	2	7,2	6,9	6,5	6,8	
4950	2	1,99	1,81	1,55	1,78	1	5,0	4,5	3,9	4,5	
4950	3	1,52	2,08	2,64	2,08	2	3,8	5,2	6,6	5,2	
					2,20	5					
6253	1	1,93	1,95	1,95	1,94	1	4,8	4,9	4,9	4,9	
6253	2	1,40	1,26	1,09	1,25	1	3,5	3,1	2,7	3,1	
6253	3	0,95	1,21	1,55	1,24	1	2,4	3,0	3,9	3,1	
						3					
8868	1	3,21	4,68	3,15	3,68	3	8,0	11,7	7,9	9,2	
8868	2	2,74	2,56	2,39	2,56	2	6,8	6,4	6,0	6,4	
8868	3	2,73	2,91	3,15	2,93	2	6,8	7,3	7,9	7,3	
					3,06	7					
3264	1	3,14	2,97	2,96	3,02	3	7,9	7,4	7,4	7,6	
3264	2	1,90	2,03	1,94	1,96	1	4,7	5,1	4,8	4,9	
3264	3	1,09	1,42	1,52	1,34	1	2,7	3,6	3,8	3,4	
					2,11	5					
6305	1	1,80	1,88	1,82	1,83	1	4,5	4,7	4,5	4,6	
6305	2	1,53	1,63	1,50	1,55	1	3,8	4,1	3,8	3,9	
6305	3	1,26	1,29	1,25	1,27	1	3,1	3,2	3,1	3,2	
					1,55	3					
8085	1	1,69	1,67	1,61	1,66	1	4,2	4,2	4,0	4,1	
8085	2	0,99	1,19	1,03	1,07	1	2,5	3,0	2,6	2,7	
8085	3	0,96	1,29	1,32	1,19	1	2,4	3,2	3,3	3,0	
					1,31	3					
8775	1	0,79	0,88	0,94	0,87	1	0,0	-2,0	-2,2	-2,4	
8775	2	0,18	0,18	0,31	0,22	1	0,0	-0,5	-0,5	-0,8	
8775	3	0,21	0,34	0,38	0,31	1	0,0	-0,5	-0,9	-1,0	
					0,47	3					

Teilnehmer	Konzen-	z-score W	lert für C (g	esamt) kont.	Sigma =	2,5% relative Abweichnung			1 (%)	
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse		2. Wert	-	Mittelwert
1136	1	3,06	3,35	3,50	3,30	3	7,7	8,4	8,8	8,3
1136	2	2,60	2,78	2,95	2,78	2	6,5	6,9	7,4	6,9
1136	3	2,34	2,28	2,13	2,25	2	5,8	5,7	5,3	5,6
					2,78	7				
2329	1	0,21	0,33	0,48	0,34	1	0,5	0,8	1,2	0,8
2329	2	0,34	0,51	0,71	0,52	1	0,8	1,3	1,8	1,3
2329	3	0,72	0,73	0,45	0,63	1	1,8	1,8	1,1	1,6
					0,50	3				
4081	1	2,38	2,24	2,18	2,27	2	5,9	5,6	5,4	5,7
4081	2	1,76	1,62	1,66	1,68	1	4,4	4,1	4,1	4,2
4081	3	0,52	0,63	0,64	0,60	1	1,3	1,6	1,6	1,5
					1,52	4				
6149	1	1,90	2,24	2,49	2,21	2	4,7	5,6	6,2	5,5
6149	2	1,49	1,69	1,83	1,67	1	3,7	4,2	4,6	4,2
6149	3	1,17	1,21	0,97	1,12	1	2,9	3,0	2,4	2,8
					1,67	4				
5913	1	0,70	0,78	0,85	0,78	1	1,8	2,0	2,1	1,9
5913	2	0,03	0,04	0,10	0,06	1	0,1	0,1	0,3	0,1
5913	3	0,10	0,11	0,10	0,10	1	0,3	0,3	0,3	0,3
					0,31	3				
6183	1	0,80	0,73	0,75	0,76	1	2,0	1,8	1,9	1,9
6183	2	0,77	0,88	0,98	0,88	1	1,9	2,2	2,4	2,2
6183	3	0,29	0,24	0,17	0,23	1	0,7	0,6	0,4	0,6
					0,62	3				
6451	1	1,53	1,51	1,64	1,56	1	3,8	3,8	4,1	3,9
6451	2	1,54	1,52	1,55	1,54	1	3,9	3,8	3,9	3,8
6451	3	1,13	1,07	1,00	1,07	1	2,8	2,7	2,5	2,7
					1,39	3				
8386	1	0,08	0,16	0,19	0,14	1	-0,2	-0,4	-0,5	-0,4
8386	2	0,44	0,47	0,47	0,46	1	-1,1	-1,2	-1,2	-1,2
8386	3	0,00	0,05	0,09	0,05	1	0,0	-0,1	-0,2	-0,1
					0,22	3				
Teilbereich nicht bestanden			kritis	sch	Teilbei	eich bes	tanden			

Tabelle 16

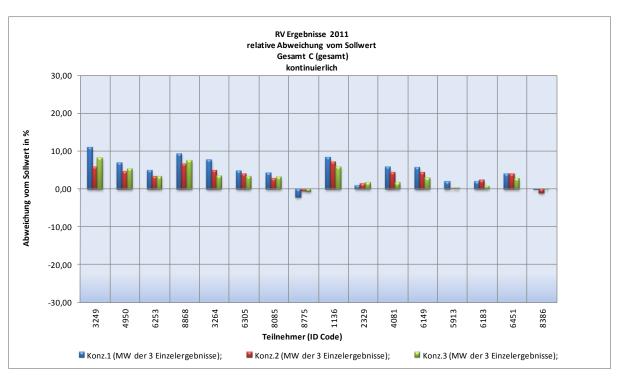
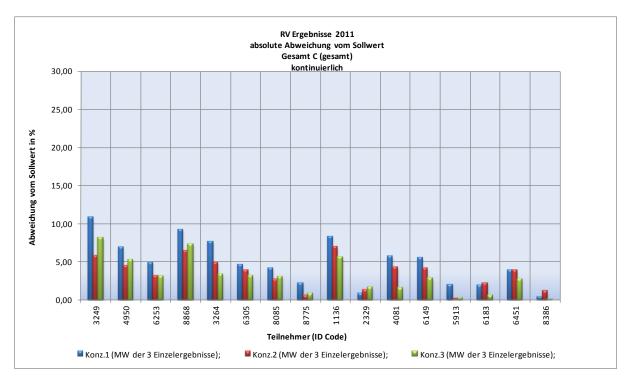
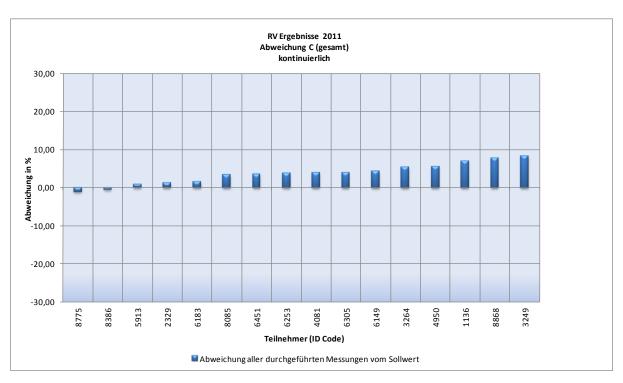
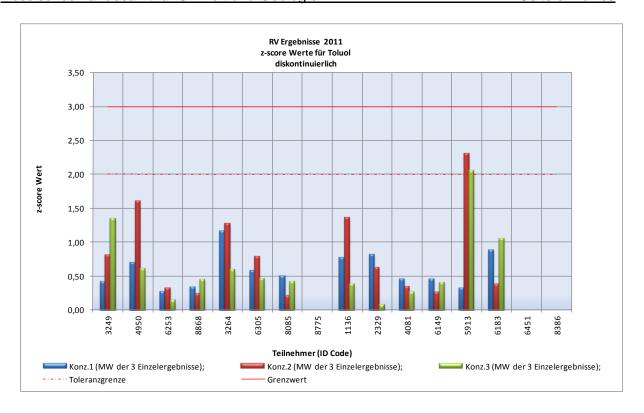
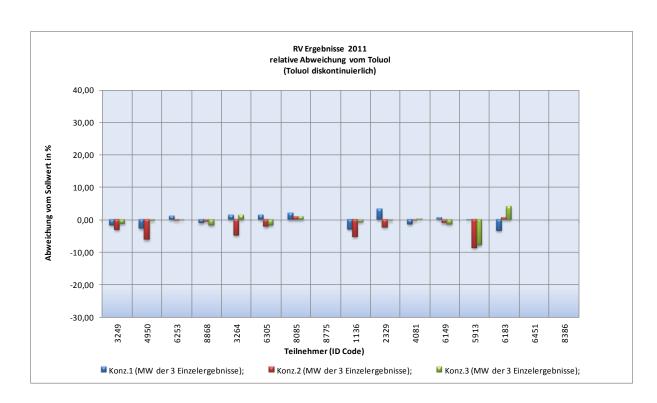
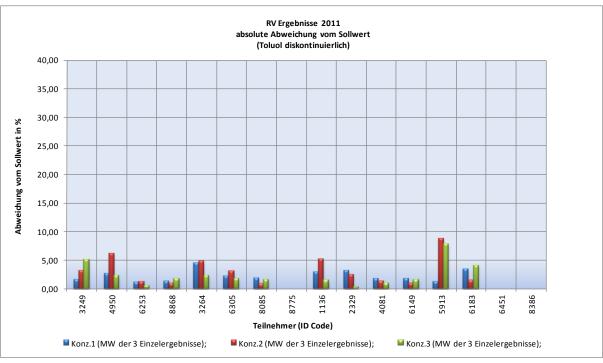




Bild 50


Bild 52


Ergebnistabelle für **Toluol** diskontinuierliche Ermittlung


Teilnehmer	Konzen-	z-score Wert für Toluol			Sigma =	3,8%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert	
3249	1	0,74	0,08	0,42	0,41	1	-2,8	-0,3	-1,6	-1,6	
3249	2	1,13	0,19	1,12	0,81	1	-4,3	-0,7	-4,3	-3,1	
3249	3	0,89	1,64	1,48	1,34	1	-3,4	-6,2	5,6	-1,3	
					0,85	3					
4950	1	1,98	0,08	0,00	0,69	1	-7,5	-0,3	0,0	-2,6	
4950	2	0,79	2,43	1,57	1,60	1	-3,0	-9,2	-6,0	-6,1	
4950	3	0,13	0,96	0,71	0,60	1	-0,5	-3,6	2,7	-0,5	
					0,96	3					
6253	1	0,49	0,33	0,00	0,27	1	1,9	1,3	0,0	1,0	
6253	2	0,32	0,53	0,11	0,32	1	1,2	-2,0	-0,4	-0,4	
6253	3	0,21	0,15	0,06	0,14	1	-0,8	0,6	-0,2	-0,1	
						3					
8868	1	0,08	0,50	0,42	0,33	1	0,3	-1,9	-1,6	-1,1	
8868	2	0,57	0,15	0,00	0,24	1	-2,2	0,6	0,0	-0,5	
8868	3	0,04	0,36	0,92	0,44	1	-0,2	-1,4	-3,5	-1,7	
					0,34	3					
3264	1	1,21	0,49	1,79	1,16	1	-4,6	1,9	6,8	1,3	
3264	2	1,41	0,63	1,77	1,27	1	-5,4	-2,4	-6,7	-4,8	
3264	3	0,34	0,35	1,09	0,59	1	1,3	-1,3	4,1	1,4	
					1,01	3					
6305	1	0,00	0,32	1,39	0,57	1	0,0	-1,2	5,3	1,3	
6305	2	1,64	0,40	0,34	0,79	1	-6,2	-1,5	1,3	-2,2	
6305	3	0,06	0,82	0,49	0,46	1	0,2	-3,1	-1,9	-1,6	
					0,61	3					
8085	1	0,81	0,49	0,16	0,49	1	3,1	1,9	0,6	1,8	
8085	2	0,00	0,30	0,34	0,21	1	0,0	1,2	1,3	0,8	
8085	3	0,31	0,57	0,34	0,41	1	-1,2	2,2	1,3	0,8	
					0,37	3					
8775	1			keine Teilnahme							
8775	2			Kein	e reimani	ile					
8775	3										

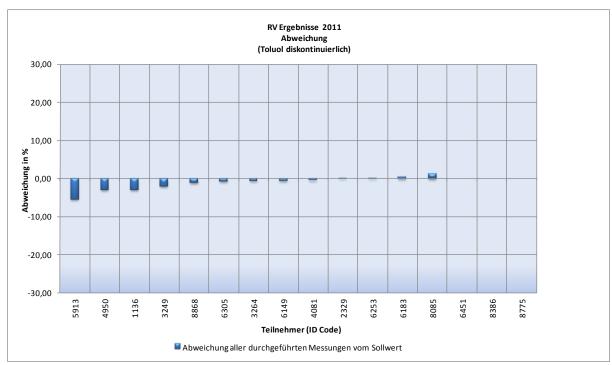
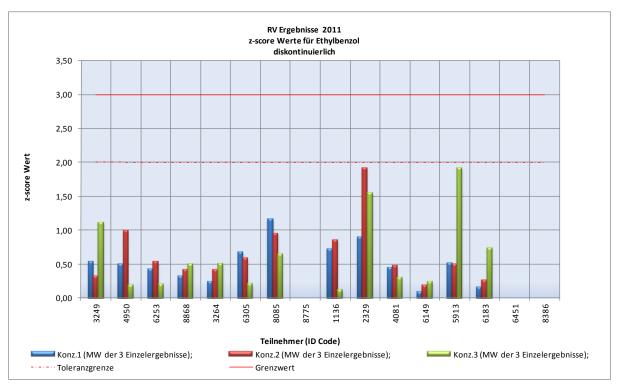
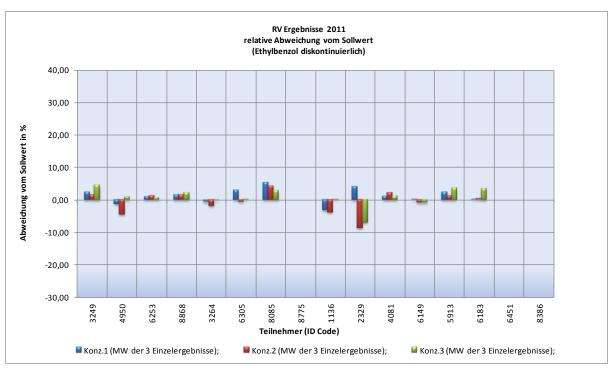
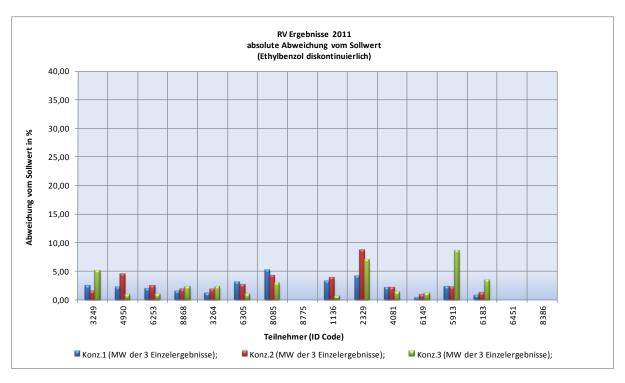

Teilnehmer	Konzen-	z-scoi	re Wert für	r Toluol Sigma = 3,8%			relative Abweichnung (%)					
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert		
1136	1	1,46	0,24	0,59	0,76	1	-5,5	-0,9	-2,3	-2,9		
1136	2	1,65	1,22	1,21	1,36	1	-6,3	-4,6	-4,6	-5,2		
1136	3	0,82	0,06	0,26	0,38	1	-3,1	-0,2	1,0	-0,8		
					0,83	3						
2329	1	0,51	0,95	0,99	0,82	1	1,9	3,6	3,8	3,1		
2329	2	0,91	0,11	0,84	0,62	1	-3,5	-0,4	-3,2	-2,4		
2329	3	0,07	0,06	0,12	0,08	1	-0,3	-0,2	-0,5	-0,3		
					0,51	3						
4081	1	0,12	1,03	0,20	0,45	1	0,4	-3,9	-0,8	-1,4		
4081	2	0,17	0,38	0,48	0,34	1	-0,7	1,4	-1,8	-0,3		
4081	3	0,16	0,51	0,12	0,26	1	-0,6	1,9	-0,5	0,3		
					0,35	3						
6149	1	0,91	0,24	0,20	0,45	1	3,4	-0,9	-0,8	0,6		
6149	2	0,30	0,36	0,11	0,26	1	-1,1	-1,4	-0,4	-1,0		
6149	3	0,16	0,82	0,22	0,40	1	-0,6	-3,1	-0,8	-1,5		
					0,37	3						
5913	1	0,15	0,52	0,30	0,32	1	0,6	-2,0	1,1	-0,1		
5913	2	1,57	2,09	3,23	2,30	2	-6,0	-7,9	-12,3	-8,7		
5913	3	4,49	0,53	1,14	2,05	2	-17,1	-2,0	-4,3	-7,8		
					1,56	5						
6183	1	0,96	0,88	0,81	0,88	1	-3,6	-3,4	-3,1	-3,4		
6183	2	0,83	0,18	0,12	0,38	1	3,1	-0,7	-0,5	0,7		
6183	3	0,80	1,06	1,29	1,05	1	3,0	4,0	4,9	4,0		
					0,77	3						
6451	1			koir	ne Teilnahı	ma						
6451	2			Kell	ie reillialli	ille						
6451	3											
8386	1			keine Teilnahme								
8386	2			Keme remainie								
8386	3											
Teilbereich nicht bestanden				krit	tisch	Teilbei	reich bes	tanden				

Tabelle 17


Bild 56


Ergebnistabelle für Ethylbenzol diskontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score \	z-score Wert für Ethylbenzol Sigma = 4,5% relative						tive Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert		
3249	1	0,68	0,28	0,63	0,53	1	3,1	1,3	2,8	2,4		
3249	2	0,01	0,93	0,03	0,32	1	0,1	4,2	0,1	1,5		
3249	3	0,33	0,21	2,80	1,11	1	1,5	-1,0	12,6	4,4		
					0,65	3						
4950	1	1,18	0,28	0,00	0,49	1	-5,3	1,3	0,0	-1,3		
4950	2	0,28	1,98	0,70	0,99	1	-1,2	-8,9	-3,1	-4,4		
4950	3	0,33	0,02	0,21	0,19	1	1,5	-0,1	1,0	0,8		
					0,56	3						
6253	1	0,68	0,28	0,31	0,42	1	3,1	1,3	-1,4	1,0		
6253	2	1,03	0,38	0,17	0,53	1	4,6	-1,7	0,8	1,2		
6253	3	0,13	0,37	0,11	0,20	1	0,6	1,7	-0,5	0,6		
						3						
8868	1	0,37	0,28	0,31	0,32	1	1,7	1,3	1,4	1,4		
8868	2	0,13	0,50	0,61	0,41	1	-0,6	2,2	2,7	1,5		
8868	3	0,84	0,56	0,08	0,49	1	3,8	2,5	0,4	2,2		
					0,41	3						
3264	1	0,47	0,18	0,06	0,24	1	-2,1	0,8	-0,3	-0,5		
3264	2	0,41	0,09	0,72	0,41	1	-1,8	-0,4	-3,2	-1,8		
3264	3	0,40	0,43	0,68	0,50	1	-1,8	-2,0	3,1	-0,2		
					0,38	3						
6305	1	0,41	0,18	1,42	0,67	1	1,9	0,8	6,4	3,0		
6305	2	0,86	0,24	0,63	0,58	1	-3,9	-1,1	2,8	-0,7		
6305	3	0,40	0,23	0,01	0,21	1	1,8	-1,1	0,1	0,3		
					0,49	3						
8085	1	1,00	1,36	1,12	1,16	1	4,5	6,1	5,1	5,2		
8085	2	0,80	1,11	0,93	0,95	1	3,6	5,0	4,2	4,3		
8085	3	0,40	0,77	0,75	0,64	1	1,8	3,5	3,4	2,9		
					0,92	3						
8775	1			len in	a Taileahu							
8775	2			Kein	e Teilnahr	ne						
8775	3											


Teilnehmer	Konzen-	z-score Wert für Ethylbenzol			Sigma =	4,5%	relative Abweichnung (%)			
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	ĺ	2. Wert	_	Mittelwert
1136	1	1,22	0,60	0,31	0,71	1	-5,5	-2,7	-1,4	-3,2
1136	2	1,04	0,49	1,03	0,85	1	-4,7	-2,2	-4,6	-3,8
1136	3	0,09	0,06	0,22	0,12	1	-0,4	0,3	1,0	0,3
					0,56	3				
2329	1	0,77	0,83	1,11	0,90	1	3,4	3,7	5,0	4,1
2329	2	1,80	1,85	2,09	1,91	1	-8,1	-8,3	-9,4	-8,6
2329	3	1,71	1,56	1,34	1,54	1	-7,7	-7,0	-6,0	-6,9
					1,45	3				
4081	1	0,48	0,31	0,54	0,44	1	2,2	-1,4	2,4	1,1
4081	2	0,34	1,03	0,03	0,47	1	1,5	4,7	0,1	2,1
4081	3	0,09	0,81	0,01	0,30	1	-0,4	3,6	0,1	1,1
					0,40	3				
6149	1	0,20	0,03	0,03	0,09	1	0,9	-0,1	-0,1	0,2
6149	2	0,12	0,18	0,27	0,19	1	-0,5	-0,8	-1,2	-0,9
6149	3	0,11	0,48	0,12	0,24	1	0,5	-2,2	-0,5	-0,7
					0,17	3				
5913	1	1,00	0,50	0,03	0,51	1	4,5	2,2	0,1	2,3
5913	2	0,80	0,35	0,32	0,49	1	3,6	1,6	-1,5	1,2
5913	3	1,62	2,45	1,65	1,91	1	-7,3	11,0	7,4	3,7
					0,97	3				
6183	1	0,11	0,06	0,31	0,16	1	-0,5	-0,2	1,4	0,2
6183	2	0,50	0,09	0,18	0,26	1	2,3	-0,4	-0,8	0,4
6183	3	0,56	0,70	0,94	0,73	1	2,5	3,2	4,2	3,3
					0,38	3				
6451	1			Leading	Tailmahaa					
6451	2			Keine	Teilnahm	ie				
6451	3									
8386	1									
8386	2			keine Teilnahme						
8386	3									
Teilbereich nicht bestanden				krit	isch	Teilber	eich bestanden			

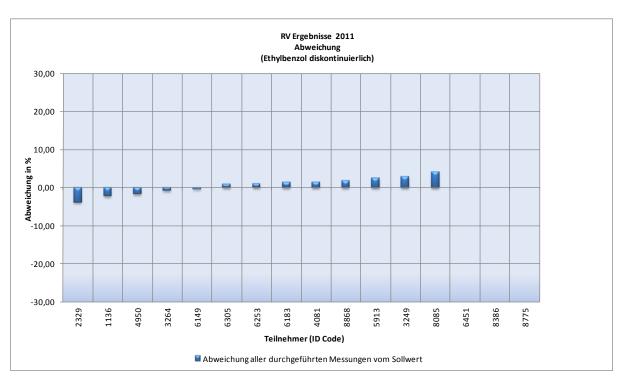
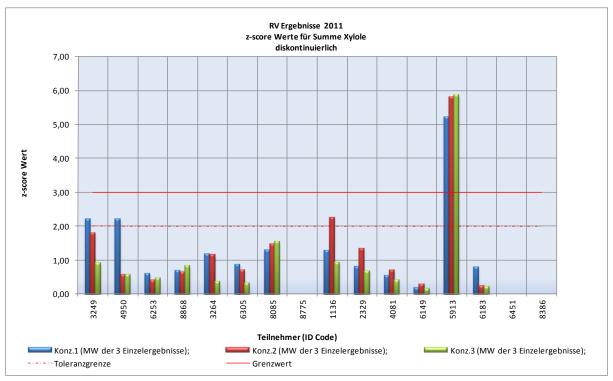
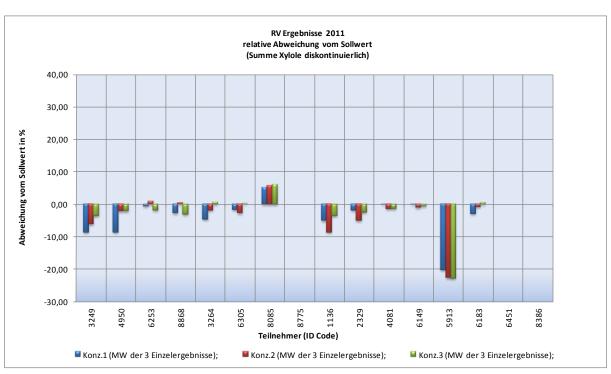
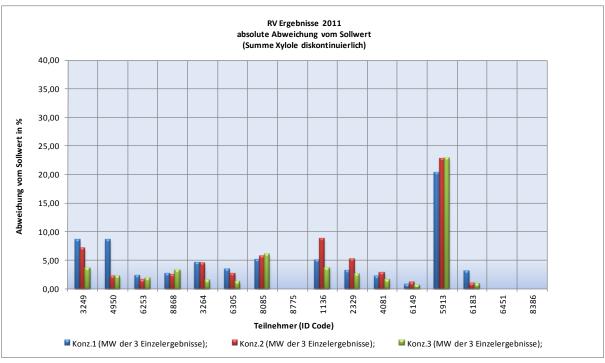

Tabelle 18

Bild 58




Ergebnistabelle für m-, p- und o-Xylol angegeben als Summe Xylol diskontinuierliche Ermittlung

Teilnehmer	Konzen-	z-score W	ert für Sum	me Xylole	Sigma =	3,9%	relative Abweichnung (%)				
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert	
3249	1	2,40	1,61	2,57	2,19	2	-9,4	-6,3	-10,0	-8,6	
3249	2	2,24	2,84	0,32	1,80	1	-8,8	-11,1	1,3	-6,2	
3249	3	0,84	1,01	0,88	0,91	1	-3,3	-3,9	-3,4	-3,6	
					1,63	4					
4950	1	1,27	3,50	1,82	2,20	2	-4,9	-13,7	-7,1	-8,6	
4950	2	0,46	0,68	0,52	0,55	1	-1,8	-2,7	-2,0	-2,2	
4950	3	1,46	0,05	0,15	0,55	1	-5,7	0,2	-0,6	-2,0	
					1,10	4					
6253	1	0,62	1,04	0,11	0,59	1	2,4	-4,1	-0,4	-0,7	
6253	2	0,25	0,64	0,28	0,39	1	1,0	2,5	-1,1	0,8	
6253	3	0,01	0,49	0,88	0,46	1	0,0	-1,9	-3,4	-1,8	
						3					
8868	1	0,89	0,66	0,49	0,68	1	-3,5	-2,6	-1,9	-2,7	
8868	2	0,84	0,28	0,76	0,63	1	3,3	1,1	-3,0	0,5	
8868	3	0,61	0,94	0,91	0,82	1	-2,4	-3,7	-3,6	-3,2	
					0,71	3					
3264	1	0,99	0,97	1,55	1,17	1	-3,9	-3,8	-6,0	-4,6	
3264	2	1,11	1,32	1,00	1,14	1	-4,3	-5,2	3,9	-1,9	
3264	3	0,02	0,75	0,32	0,36	1	0,1	2,9	-1,2	0,6	
					0,89	3					
6305	1	1,53	0,43	0,61	0,86	1	-6,0	-1,7	2,4	-1,8	
6305	2	0,10	1,32	0,64	0,69	1	-0,4	-5,2	-2,5	-2,7	
6305	3	0,09	0,31	0,56	0,32	1	-0,4	-1,2	2,2	0,2	
					0,62	3					
8085	1	1,17	1,36	1,33	1,29	1	4,6	5,3	5,2	5,0	
8085	2	1,16	1,58	1,63	1,46	1	4,5	6,1	6,4	5,7	
8085	3	1,40	1,70	1,51	1,54	1	5,5	6,6	5,9	6,0	
					1,43	3					
8775	1										
8775	2			keine Teilnahme							
8775	3										


Teilnehmer	Konzen-	z-score W	ert für Sum	me Xylole	Sigma =	3,9%	re	lative Abw	eichnung	ı (%)
Nr.	tration	1. Wert	2. Wert	3. Wert	Mittelwert	Klasse	1. Wert	2. Wert	3. Wert	Mittelwert
1136	1	2,01	1,29	0,52	1,27	1	-7,8	-5,0	-2,0	-5,0
1136	2	2,50	1,79	2,41	2,23	2	-9,8	-7,0	-9,4	-8,7
1136	3	1,22	0,95	0,62	0,93	1	-4,7	-3,7	-2,4	-3,6
					1,48	4				
2329	1	1,14	0,79	0,49	0,81	1	-4,4	-3,1	1,9	-1,9
2329	2	1,12	1,54	1,29	1,32	1	-4,4	-6,0	-5,0	-5,1
2329	3	0,58	0,69	0,70	0,66	1	-2,3	-2,7	-2,7	-2,5
					0,93	3				
4081	1	0,51	0,72	0,39	0,54	1	-2,0	2,8	-1,5	-0,2
4081	2	0,74	0,46	0,91	0,70	1	-2,9	1,8	-3,6	-1,5
4081	3	0,47	0,69	0,02	0,39	1	-1,8	-2,7	0,1	-1,5
					0,54	3				
6149	1	0,24	0,29	0,01	0,18	1	0,9	-1,1	0,0	-0,1
6149	2	0,24	0,16	0,41	0,27	1	-0,9	-0,6	-1,6	-1,1
6149	3	0,05	0,31	0,13	0,16	1	-0,2	-1,2	-0,5	-0,6
					0,20	3				
5913	1	4,50	5,36	5,80	5,22	3	-17,5	-20,9	-22,6	-20,3
5913	2	8,31	4,12	4,99	5,81	3	-32,4	-16,1	-19,5	-22,6
5913	3	5,83	5,91	5,85	5,86	3	-22,7	-23,1	-22,8	-22,9
					5,63	9				
6183	1	0,24	1,01	1,08	0,78	1	-0,9	-4,0	-4,2	-3,0
6183	2	0,43	0,27	0,00	0,23	1	-1,7	-1,1	0,0	-0,9
6183	3	0,12	0,04	0,49	0,22	1	-0,4	0,2	1,9	0,5
					0,41	3				
6451	1									
6451	2			l k	eine Teilr	nanme				
6451	3									
8386	1			keine Teilnahme						
8386	2			Keme remailile						
8386	3									
Teilbe	reich nich	t bestand	en	krit	isch	Teilber	reich bes	tanden		

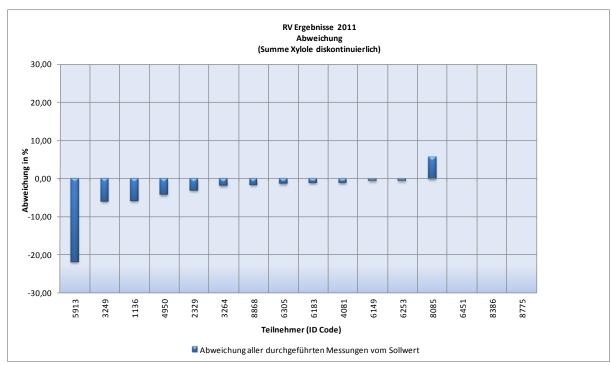

Tabelle 19

Bild 62

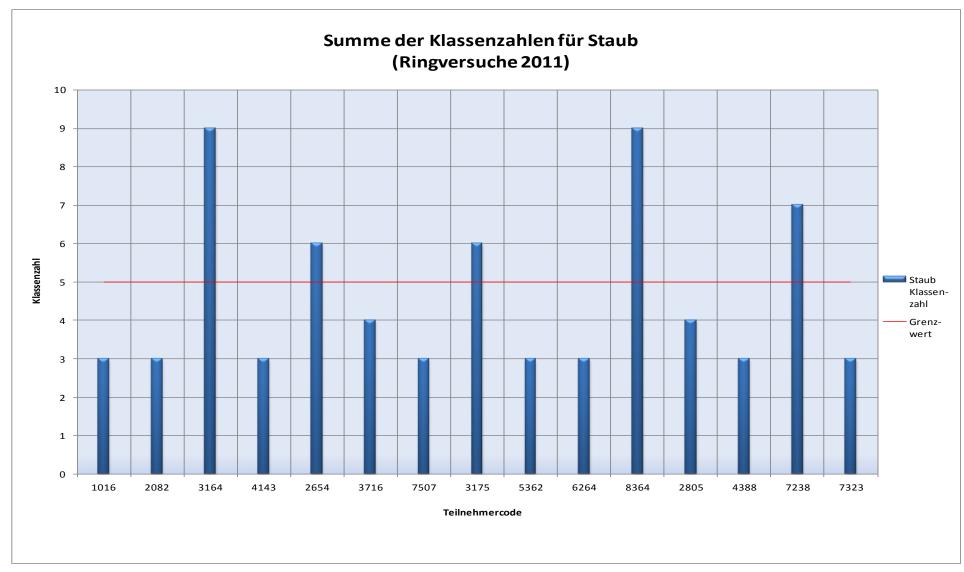
Bild 64

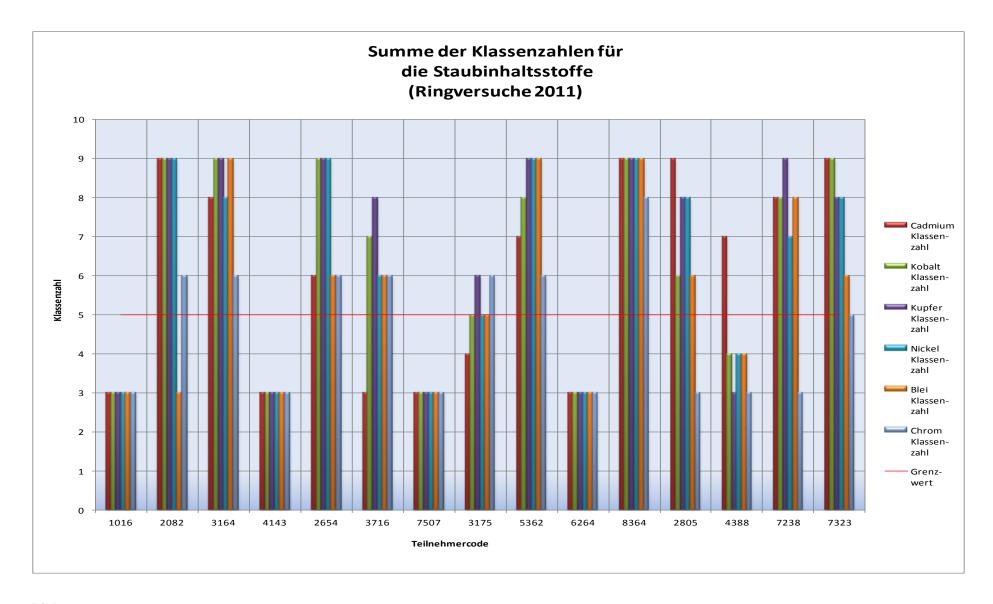
4.3 Klassenzahlen

Nachfolgend sind die Klassenzahlen, die gemäß den Bewertungsmodalitäten nach Ziffer 5.1 der Durchführungsbestimmungen ermittelt wurden, tabellarisch zusammengestellt.

4.3.1 Summe der Klassenzahlen für RV Staub / Staubinhaltsstoffe

Teilnehmer- nummer:	Staub Klassen-	Teilbereich Staub	Cadmium Klassen-	Kobalt Klassen-	Kupfer Klassen-	Nickel Klassen-	<u>Blei</u> Klassen-	<u>Chrom</u> Klassen-	Teilbereich Staubinhalts-	Grenz- wert
	zahl	bestanden	zahl	zahl	zahl	zahl	zahl	zahl	stoffe	
		J/N							J/N	
1016	3	J	3	3	3	3	3	3	J	5
2082	3	J	9	9	9	9	3	6	N	5
3164	9	N	8	9	9	8	9	6	N	5
4143	3	J	3	3	3	3	3	3	J	5
2654	6	N	6	9	9	9	6	6	N	5
3716	4	J	3	7	8	6	6	6	N	5
7507	3	J	3	3	3	3	3	3	J	5
3175	6	N	4	5	6	5	5	6	N	5
5362	3	J	7	8	9	9	9	6	N	5
6264	3	J	3	3	3	3	3	3	J	5
8364	9	N	9	9	9	9	9	8	N	5
2805	4	J	9	6	8	8	6	3	N	5
4388	3	J	7	4	3	4	4	3	J	5
7238	7	N	8	8	9	7	8	3	N	5
7323	3	J	9	9	8	8	6	5	N	5
		Grenzwert der K Teilbereich nich		erschritten			k.T. = keine	Teilnahme		


Tabelle 20


In Tabelle 20 wird die Bewertung für die Auswertung von Staub und für die Ergebnisse der Bestimmung der Schwermetalle Cd, Co, Cu, Ni, Pb, und Cr dargestellt.

Es ist zu erkennen, dass die Ermittlung von Staub nicht von allen teilnehmenden Messinstituten beherrscht wurde. Die Institute mit der Code-Nr. 3164, 2654, 3175, 8364 und 7238 haben eine Klassenzahl > 5 erzielt und haben somit unter Anwendung der Bewertungskriterien der Durchführungsbestimmungen diesen Teilbereich des Ringversuches nicht bestanden.

Die Analyse der Staubinhaltstoffe führte ebenfalls zum Teil nicht zu einem ausreichenden Ergebnis. Die Teilnehmer mit der Code-Nr. **2082**, **3164**, **2654**, **3716**, **3175**, **5362**, **8364**, **2805**, **7238** und **7323** haben eine Summe der Klassenzahlen >5 bei mehr als einer Komponente erzielt, d. h. die betreffenden Stellen haben unter Anwendung der Bewertungskriterien der Durchführungsbestimmungen diesen Teilbereich des Ringversuches nicht bestanden.

Die Teilnehmer mit der Nummer 3164, 2654,3175, 8364 und 7238 haben für beide Teile des Ringversuches das Ziel nicht erreicht.

4.3.2 Summe der Klassenzahlen für RV gasförmige Stoffe

4.3.2.1 "Ermittlung der Emissionen von anorganischen Gasen" (Kennung A der Bekanntgabe)

Teilnehm Nummer:	Schwefeldioxid (SO ₂)		Stickst (als	offoxid NO ₂)	Bereich [A] bestanden
	kont. Messung (SO ₂)	diskont. Messung (SO ₂)	kont. Messung (NO ₂)	diskont. Messung (NO ₂)	J/N
3249	4	4	3	3	J
4950	3	3	3	3	J
6253	3	3	3	3	J
8868	3	3	3	3	J
3264	3	6	3	3	J
6305	3	3	4	3	J
8085	3	3	3	3	J
8775	6	0	4	0	k.T.
1136	6	3	4	5	J
2329	0	0	0	0	K.T.
4081	3	3	5	5	J
6149	3	3	3	6	J
5913	6	9	9	9	N
6183	9	3	8	3	N
6451	0	0	0	0	K.T.
8386	0	0	0	0	k.T.
	nicht teilgenommen				
	Grenzwert der	Klassenzahl ü			
	Teilbereich nie	cht bestanden			
k.T. = keine	Teilnahme				
*) dient nicht	als Bewertu	ıngsgrundlaç	ge		

Tabelle 21

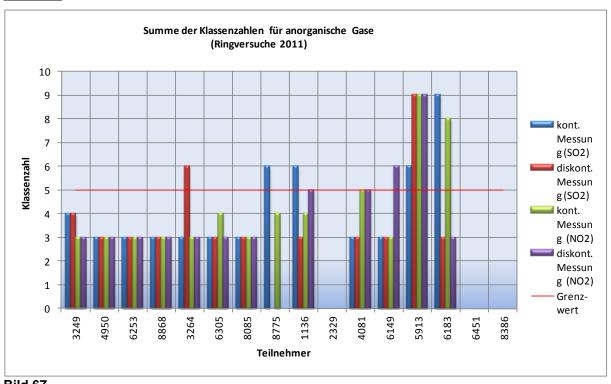
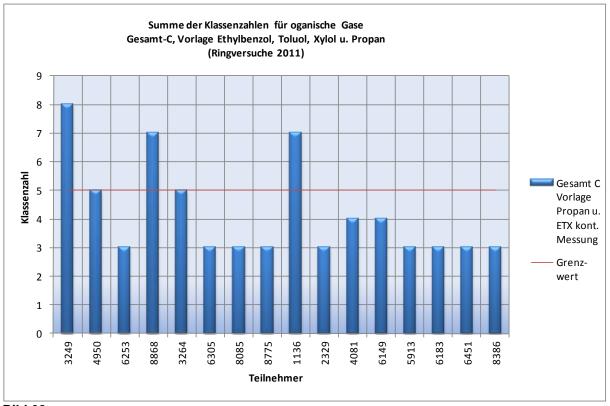


Bild 67

In der Tabelle 21 wird das Ergebnis der Bewertung für die Untersuchungsparameter Schwefeldioxid (SO₂) und Stickoxide (NO+NO₂ als NO₂) dargestellt. Für die anorganischen Komponenten Schwefeldioxid und Stickoxide gingen sowohl die kontinuierliche Untersuchungen als auch die mit den Referenzmessverfahren diskontinuierlich ermittelten Ergebnisse in die Bewertung ein.


Die Teilnehmer mit den Nummern **5193** und **6183** haben eine Summe der Klassenzahl >5 bei mehr als einem der zu ermittelnden Untersuchungsteile erzielt, d. h. die betreffenden Messinstitute haben unter Anwendung der Bewertungskriterien gemäß Ziffer 5.1 der Durchführungsbestimmungen diesen Teilbereich des Ringversuches nicht bestanden. Die Teilnehmer mit den Nummern 6451 und 8386 haben an der Ermittlung der Emissionen von anorganischen Gasen" (Kennung A der Bekanntgabe) nicht teilgenommen.

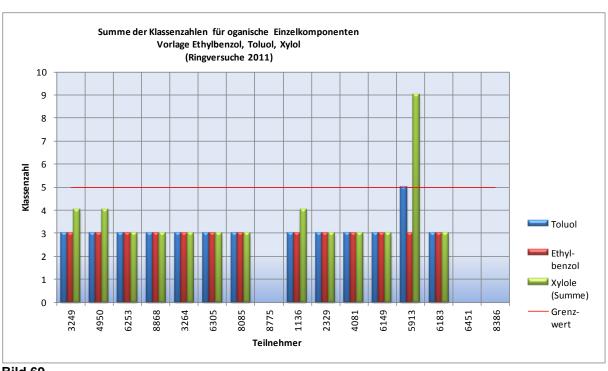
4.3.2.2 "Ermittlung der Emission organischer Verbindungen" (Kennung I der Bekanntgabe)

Teilbereich "Gesamt-C"

Für jedes einzelne Messergebnis der drei Konzentrationsstufen der kontinuierlichen Messung (Gesamt-C als Summe Propan und org. Einzelkomponenten) wird ein zscore Wert berechnet. Die drei errechneten z-score Werte einer Konzentrationsstufe werden zum Mittelwert zusammengefasst. Anschließend erfolgt die Zuordnung des z-score-Mittels zu einer Klassenzahl 1, 2 oder 3. Das Zusammenfassen der Klassenzahlen drei Konzentrationsstufen für "Gesamt-C, kontinuierliche Messung" führte zur Bildung folgender Klassensummen:

Teilnehmer Nummer:	Gesamt C Vorlage Propan u.ETX kont. Messung	Teilbereich [1] bestanden J/N	
3249	8	N	
4950	5	J	
6253	3	J	
8868	7	N	
3264	5	J	
6305	3	J	
8085	3	J	
8775	3	J	
1136	7	N	
2329	3	J	
4081	4	J	
6149	4	J	
5913	3	J	
6183	3	J	
6451	3	J	
8386	3	J	
k.T.	keine Teilnahme		
	Grenzwert der Klassenzahl überschritter Teilbereich nicht bestanden		
	i elibereich nicht bes	tanuen	

Für den Bereich "Ermittlung der Emission organischer Verbindungen" (Kennung I der Bekanntgabe), haben die Teilnehmer mit den Nummern **3249**, **8868** und **1136** eine Summe der Klassenzahlen >5 für den Teilbereich "Gesamt-C" erzielt, d. h. die betreffenden Messinstitute haben unter Anwendung der Bewertungskriterien gemäß Ziffer 5.3 der Durchführungsbestimmungen diesen Teilbereich des Ringversuches nicht bestanden.


4.3.2.3 "Ermittlung der Emission organischer Verbindungen" (Kennung I der Bekanntgabe)

Teilbereich "organische Einzelkomponenten"

Für eine erfolgreiche Teilnahme im Bekanntgabebereich "Ermittlung der Emission organischer Verbindungen" [I], **Teilbereich "organische Einzelkomponenten"** müssen mindestens 2 von 3 Komponenten (Ethylbenzol, Toluol und Summe Xylole) mit Erfolg (Klassenzahlen \leq 5) bestimmt worden sein (Erfolgsquote bezogen auf die Parameterzahl = 67 v.H.) um diesen Teil des Ringversuches zu bestehen.

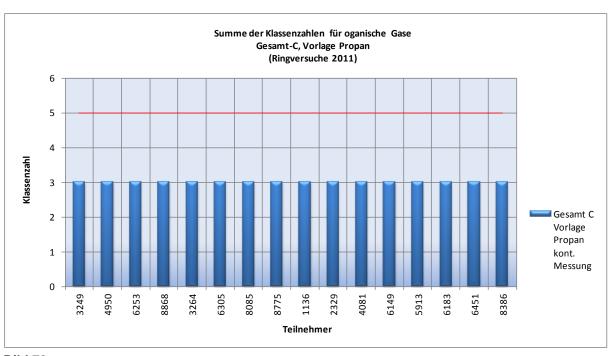
Teilnehmer Nummer:	<u>Toluol</u>	Ethyl- benzol	Xylole (Summe)	Teilbereich [1] bestanden		
	diskont. Messung	diskont. Messung	diskont. Messung	J/N		
3249	3	3	4	J		
4950	3	3	4	J		
6253	3	3	3	J		
8868	3	3	3	J		
3264	3	3	3	J		
6305	3	3	3	J		
8085	3	3	3	J		
8775	0	0	0	k.T.		
1136	3	3	4	J		
2329	3	3	3	J		
4081	3	3	3	J		
6149	3	3	3	J		
5913	5	3	9	J		
6183	3	3	3	J		
6451	0	0	0	k.T.		
8386	0	0	0	k.T.		
k.T.	keine Teilnah					
	Grenzwert der Klassenzahl überschritten					
	I eilbereich nie	cht bestanden				

Tabelle 23

Bild 69

Die Tabelle 23 und die nachfolgende Graphik (Bild 69) zeigen die Bewertung für die Untersuchungsparameter org. Einzelkomponenten. Für iedes Messergebnis der drei Konzentrationsstufen der diskontinuierliche zu ermittelnden Einzelkomponenten Ethylbenzol, Toluol und Summe Xylole wird ein z-score Wert berechnet. Die drei errechneten z-score Werte einer Konzentrationsstufe werden zu einem Mittelwert zusammengefasst. Anschließend erfolgt die Zuordnung des zscore-Mittels zu einer Klassenzahl 1, 2 oder 3. Das Zusammentragen der Klassenzahlen für die jeweils drei Konzentrationsstufen jedes Parameters (Ethylbenzol. Toluol und Summe Xylole) führt zur Bildung parameterspezifischen Klassensummen.

Defizite waren hier nicht erkennbar (Ausnahme Xylol beim Teilnehmer 5913).


4.3.2.4 "Ermittlung der Emission organischer Verbindungen"

Teilbereich "Ermittlung von Propan"

Die am ersten Ringversuchstag zusammen mit SO₂ und NO/NO₂ im Rahmen der kontinuierlichen Ermittlungen erhaltenen Gesamt-C Ergebnisse werden gemäß den Durchführungsbestimmungen für Ringversuche von § 26-Messstellen (gasförmige Emissionskomponenten) Stand Juni 2007 nicht in die Bewertung mit einbezogen, da während dieses Ringversuchsteiles lediglich Propan als organische Komponente angeboten wird. Gleichwohl ist vorgesehen diese Ergebnisse auch weiterhin abzufragen um mögliche Fehler bei der kont. Ermittlung von Gesamt-C im Vorfeld zur Ermittlung des organischen Komponentengemisches erkennen zu können. In Tabelle 24 sind die ermittelten Ergebnisse für diesen Parameter zusammengestellt und graphisch in Bild 70 dargestellt:

Teilnehmer Nummer:	<u>Gesamt C</u> Vorlage Propan kont. Messung	bestanden *) J/N			
3249	3	J			
4950	3	J			
6253	3	J			
8868	3	J			
3264	3	J			
6305	3	J			
8085	3	J			
8775	3	J			
1136	3	J			
2329	3	J			
4081	3	J			
6149	3	J			
5913	3	J			
6183	3	J			
6451	3	J			
8386	3	J			
k.T.	keine Teilnahme Grenzwert der Klass Teilbereich nicht be	senzahl überschritten standen			
*) dient nicht als Bewertungsgrundlage					

Tabelle 24

Bild 70

Es sind kein Defizite zu erkennen.

5 Prüfgasuntersuchungen

5.1 Vorbemerkung

Im Rahmen der Durchführung von Ringversuchen für die Bereiche "Ermittlung der Emission anorganischer Gase" und "Ermittlung der Emissionen organischer Verbindungen" wurde angeboten die von den Ringversuchsteilnehmern eingesetzten Prüfgase mit Prüfgasen des Veranstalters (rel. Messunsicherheit ± 1 %) zu vergleichen. Es wurden die relativen Abweichungen zum jeweiligen Zertifikat berechnet. Die Ergebnisse wurden in einem gesonderten Prüfbericht zusammengefasst. Dieser wurde den Teilnehmern nach dem Ringversuches postalisch übermittelt. Es lag im Ermessen der Ringversuchsteilnehmer die ggf. ermittelten Abweichungen in die Berechnungen mit einzubeziehen.

In den nachfolgenden Abschnitten wird eine kurze Beschreibung zur Ausstattung und Vorgehensweise der Untersuchung von Prüfgasen durch das HLUG gegeben.

5.2 Technische Ausstattung zur Prüfgasuntersuchung

5.2.1 Messplatz

Der Messplatz zur Prüfgasuntersuchung ist wie folgt ausgestattet:

- 4 x Sicherheitszellen für Gase, davon 2 Sicherheitszellen speziell für Prüfgase
- Stationäre Einheit zur Dosierung von 100% Gasen
- Entnahmeventile für verschiedene Gase aus der zentralen Gasversorgung
- Absaugventilator f
 ür die Sicherheitszellen

5.2.2 Geräteausstattung

Die eignungsgeprüften automatisch arbeitenden Messeinrichtungen zur Untersuchung der Prüfgase sind in einem Analysenschrank der Fa. ABB untergebracht.

Es stehen folgende Geräte zur Verfügung:

1. Prozessphotometer-Analysatormodul Limas 11 UV Messbereiche:

SO₂ 0-200/1000 mg/m³ NO 0-300/1000 mg/m³ NO₂ 0-130/250/500 mg/m³

Linearitätsabweichung ≤ 1% der Messspanne Wiederholbarkeit ≤ 0,5% der Messspanne

Nullpunktsdrift \leq 1% der Messspanne pro WocheEmpfindlichkeitsdrift \leq 1% der Messspanne pro WocheNachweisgrenze \leq 0,5% bis \leq 1% der Messspanne

Nullpunktkalibrierung: mit Inertgas, z.B. N₂ Endpunktkalibrierung:

mit gasgefüllten Kalibrierküvetten (Option) oder mit Prüfgasgemischen.

Eignungsprüfung: ja

Das Analysatormodul Limas 11-UV erfüllt die Mindestanforderungen der "Richtlinien für die Eignungsprüfung, den Einbau, die Kalibrierung, die Wartung von Messeinrichtungen für kontinuierliche Emissionsmessungen" -

Rundschreiben des BMU vom 08.06.1998; IG I 3-51134/3. Das Analysensystem ist geeignet für den Einsatz in Anlagen gemäß 13. BlmSchV, 17. BlmSchV und TA-Luft sowie Anlagen mit vergleichbarer Abgasmatrix. Bericht Nr.: 24023188 Kleinste geprüfte Messbereiche: 0...75 mg/m³ SO₂ und 0...75 mg/m³ NO

2. FID-Analysatormodul Multi-FID 14 Messbereiche:

 C_3H_8 0-197/400 mg/m³

Linearitätsabweichung ≤ 2% der Messspanne bis 10000 mg org. C/m³

Wiederholbarkeit ≤ 0,5% der Messspanne Nullpunktsdrift ≤ 0,5 mg org. C/m³ pro Woche Empfindlichkeitsdrift ≤ 0,5 mg org. C/m³ pro Woche

Nachweisgrenze ≤ 2 % des Endwertes im Messbereich

> 0...15 mg org. C/m³

O₂-Abhängigkeit ≤ 2 % vom Messwert für 0...21 Vol. % O₂

oder ≤ 0,3 mg org. C/m³, es gilt der jeweils größere

Wert.

Nullpunktkalibrierung:

mit synthetischer oder katalytisch gereinigter Luft oder mit Stickstoff N₂ **Endpunktkalibrierung:**

mit Propan oder einem anderen Kohlenwasserstoff (Ersatzgas) in Luft oder Stickstoff, je nach Applikation.

Eignungsprüfung: ja

Das Analysatormodul Multi-FID 14 erfüllt die Mindestanforderungen der "Richtlinien für die Eignungsprüfung, den Einbau, die Kalibrierung, die Wartung von Messeinrichtungen für kontinuierliche Emissionsmessungen" -

Rundschreiben des BMU vom 01.09.1997; IG I 3-51134/3. Das Analysensystem ist geeignet für den Einsatz in Anlagen gemäß 13. BImSchV, 17. BImSchV und TA-Luft sowie Anlagen mit vergleichbarer Abgasmatrix. Bericht Nr.: 24016659 Kleinster geprüfter Messbereich: 0...15 mg/m³ C

3. O2-Analysator Oxor 610 der Fa. Maihak Messbereiche:

O₂ 0-25 Vol%

Linearitätsabweichung ≤ 1% der kleinsten Messspanne

Nullpunktsdrift $\leq 0.05\% O_2$ pro Woche

Empfindlichkeitsdrift ≤ 1% der Messwertes pro Woche Nachweisgrenze ≤ 1% der kleinsten Messspanne

Eignungsprüfung: ja

Es wird auf den Eignungsprüfungsbericht des RW-TÜV, Anlagentechnik GmbH Nr. 352/0577/95/593725 vom 27.07.1995; GMBI.1996 Nr. 8 Seite 189 verwiesen

4. Messgaskühler

Typ: Advance SCC-C

5. Folgende PC-Hardware/Software ergänzt die Einrichtung:

- Notebook Siemens/Fujitsu Celsisus Mobile
- MS-Windows 2000, MS-Office Professional
- Kommunikations-Software f
 ür den PC der Fa. ABB (auf CD)

Herstelleranschrift: Fa. ABB

Höseler Platz 2 42579 Heiligenhaus

Messdatenerfassung "Easycomp" der Fa. Breitfuss

Herstelleranschrift: Fa. Breitfuss Messtechnik GmbH

Danziger Straße 29 27243 Harpstedt

5.2.3 Kenndaten der Referenzgase

(PEH-Gas = gravimetrische Herstellung)

Prüfgasart SO₂ in N₂

Flaschen-Nr.: 3746353

Herst. Datum: 20.04.2006 (nachz. 01.04.2009)

Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate] (24 Monate)

Flaschenvolumen: 40 [Liter]

Messunsicherheit: $\pm 0,1 [\%]$ $(\pm 1 \%)$

Soll Konz.: 159,97 [mg/m³] (DKD 158,5 mg/m³)

Flaschen-Nr.: 3746367 Herst. Datum: 22.03.2011 Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate] Flaschenvolumen: 40 [Liter] Unsicherheit: ± 0,5 [%]

Soll Konz.: 180,0 [mg/m³] in N₂

Prüfgasart NO in N₂

Flaschen-Nr.: 3730318

Herst. Datum: 31.03.2006 (nachz. 18.06.2009)

Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate] (24 Monate)

Flaschenvolumen: 40 [Liter]

Messunsicherheit: $\pm 0,1 [\%]$ $(\pm 1 \%)$

Soll Konz.: 260,12 [mg/m³] (DKD 260,0 mg/m³)

Flaschen-Nr.: 3859117 Herst. Datum: 11.03.2011 Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate]
Flaschenvolumen: 40 [Liter]
Messunsicherheit: ± 0,5 [%]

Soll Konz.: 280,1 [mg/m³] in N₂

Prüfgasart Propan (C₃H₈) in synth. Luft

Flaschen-Nr.: 3746361 Herst. Datum: 24.03.2006

Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate] (24 Monate)

Flaschenvolumen: 40 [Liter]

Messunsicherheit: $\pm 0,1 [\%]$ $(\pm 1 \%)$

Soll Konz.: 159,88 [mg/m³] (DKD 160,5 mg/m³)

(nachz. 31.03.2009)

Flaschen-Nr.: 3795478 Herst. Datum: 11.03.2011 Hersteller: Linde AG

Bezugsgröße: 273,15 [°K] und 1013 [hPa]

Stabilität: 36 [Monate] Flaschenvolumen: 40 [Liter] Messunsicherheit: ± 0,5 [%]

Soll Konz.: 180,0 [mg/m³] in N₂

5.2.4 Analytische Qualitätskontrolle anhand interner Maßnahmen

Überprüfung der Messbereiche mit Hilfe eines Gasteilers

Hersteller: Fa. Horiba
 Typ: SGD-710C
 Serien-Nr.: 2901903003
 Baujahr: 03/2002,
 DKD-Schein vom: 29.09.2011
 DKD-Schein Nr.: 22301

5.3 Ablauf der Prüfung

- 1. Vor Beginn der Prüfgasuntersuchungen wurden folgende Arbeiten durchgeführt:
 - Bereitstellung der erforderlichen Versorgungsgase (Wasserstoff 5.0, Stickstoff, synth. Luft und Druckluft)
 - die vorgeschriebene Warmlaufphase der Analysengeräte ist einzuhalten
 - Einrichten und Vorbereiten der Programme "EasyComp" und Optima Remote HMI zur Datenerfassung
 - Kontrolle und Anschlüsse der hochreinen Prüfgase in der Sicherheitszelle überprüfen
- 2. Anschließend werden die Geräte
 - Limas 11 UV-SO₂/NO/NO₂
 - Multi-FID 14

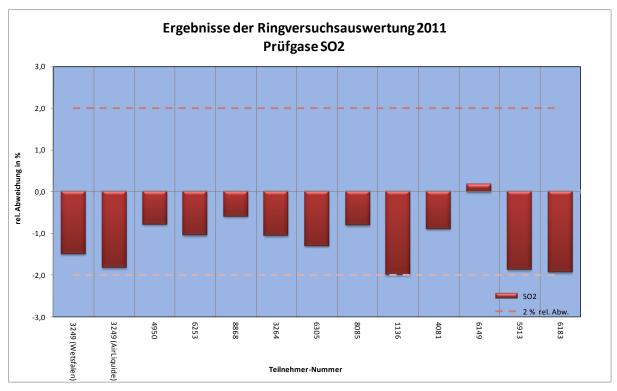
mit den hochreinen Prüfgasstandards des HLUG (Ziffer 5.2.3) kalibriert.

- 3. Die Prüfgaszertifikate der zur Untersuchung anstehenden Flaschen der Ringversuchsteilnehmer (soweit vorhanden) werden kopiert und die Kenndaten in eine Protokollvorlage übernommen.
- **4.** Die zu überprüfenden Flaschen werden mit einem Druckminderer versehen, das Flaschenventil aufgedreht und 2 mal gespült.
- **5.** Da der Multi-FID 14 und die SO₂/NO/NO₂/O₂-Analysatoren zwei getrennte Gaswege haben, können zwei Gase parallel an die Durchflussmesser angeschlossen und untersucht werden.
- **6.** Die Datenerfassung erfolgt mit der Software "EasyComp". Die Abtastrate der Messwerte liegt bei 2 sec. die als Einminutenmittelwerte gespeichert werden. Es wird versucht mindestens zehn Minutenmittelwerte zu erhalten. Dies ist jedoch u.a. abhängig vom Druck in den zu untersuchenden Flaschen.
- 7. An Hand der Untersuchungszeiten werden die erhaltenen Werte in einem Excelsheet den Sollwerten gegenübergestellt und deren relative Abweichung berechnet.
- 8. Für jeden Ringversuchsteilnehmer wird ein Untersuchungsbericht mit den ermittelten Werten erstellt. Auf Abweichungen die die angegebenen Herstellertoleranzen überschreiten wird im Rahmen der Schlussbesprechung zum Ringversuch gesondert hingewiesen. Eine Zweitausfertigung des Unter-

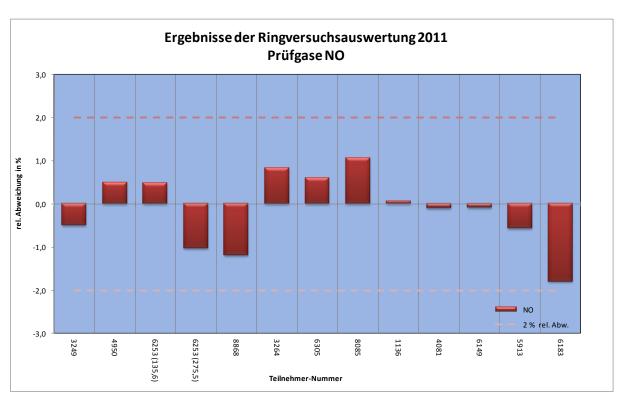
suchungsberichtes wird bei den Ringversuchsunterlagen (Ringversuchsakte) archiviert.

5.4 Ergebnisse der Prüfgasuntersuchungen

In Tabelle 25 sind die erhaltenen Einzelergebnisse der Vergleichsuntersuchungen zusammengestellt. Die nachfolgenden grafischen Darstellungen (Bild 70 bis 72) vermitteln einen Überblick über die vom HLUG durchgeführten Prüfgasuntersuchungen.


Untersuchung der Prüfgaskonzentration der RV Teilnehmer 2011

(Angabe der rel. Abweichung in Prozent)


	Prüfgas- Komponente <mark>SO₂</mark>		Prüfgas- Komponente <mark>NO</mark>		Prüfgas- Komponente C ₃ H ₈
Teilnehmer	relative	Teilnehmer	relative	Teilnehmer	relative
Nr.:	Abweichnung [%]	Nr.:	Abweichnung [%]	Nr.:	Abweichnung [%]
3249 (Wetsfalen)	-1,5	3249	-0,49	3249	0,24
3249 (AirLiquide)	-1,82				
4950	-0,79	4950	0,50	4950 (15,54)	1,67
				4950 (156,00)	0,51
6253	-1,05	6253 (135,6)	0,49	6253	0,28
		6253 (275,5)	-1,03		
8868	-0,6	8868	-1,19	8868	-3,09
3264	-1,06	3264	0,84	3264	-1,01
6305	-1,30	6305	0,61	6305	0,50
8085	-0,81	8085	1,07	8085	2,22
				8775	0,35
1136	-1,99	1136	0,06	1136	0,44
				2329	0,23
4081	-0,89	4081	-0,09	4081	0,42
6149	0,17	6149	-0,08	6149 (931207)	0,99
				6149 (931187)	0,97
5913	-1,87	5913	-0,56	5913	1,85
6183	-1,93	6183	-1,79	6183	0,56
				6451	0,06
				8368	0,11

außerhalb der Angaben des Zertifikates

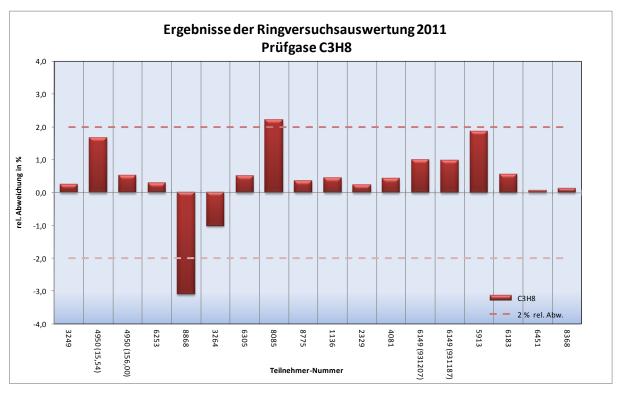

Tabelle 25

Bild 71

Bild 72

Bild 73

Im Jahr 2011 wurden wieder Abweichungen zu den Angaben der Prüfgashersteller festgestellt. Lediglich in drei Fällen lagen die Abweichungen außerhalb der im zugehörigen Prüfgaszertifikat angegebenen Toleranzgrenzen.

Das Ergebnis zeigt, dass es wichtig ist die Untersuchung der Prüfgase weiterhin als festen Bestandteil der Ringversuchsdurchführung bei zu behalten.

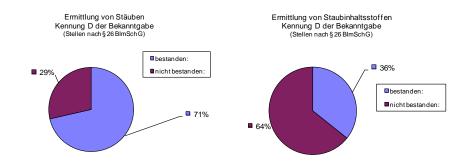
6 Ergebniszusammenfassung

Dieser Bericht beschreibt die Durchführung und die Ergebnisse der Emissions-Ringversuche an der ESA für das Jahr 2011.

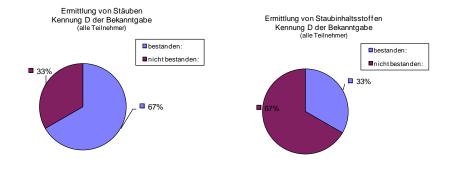
Bei den Ringversuchen haben die Teilnehmer überwiegend regelkonforme Messausrüstungen eingesetzt.

Die Auswertung und Bewertung der Ringversuche erfolgte nach dem z-score Verfahren. Danach wird für jedes Mess- und Analyseergebnis eines i-ten Teilnehmers ein z-score-Wert berechnet und dem Wert eine Klassenzahl zuge- ordnet. Die statistischen Grundlagen zur Durchführung und Bewertung der in diesem Bericht beschriebenen Ringversuche sind dem Abschnitt 5 der jeweiligen Durchführungsbestimmungen und die einzelnen Bewertungsergebnisse den Tabellen zu entnehmen.

Die Messergebnisse und Bewertungen wurden tabellarisch zusammengestellt, und graphisch dargestellt.


Der prozentuale Anteil der Teilnehmer die jeweils einen Teil des jeweiligen Ringversuches nicht bestanden haben (Durchfallquote) ist nachfolgend zur besseren Übersicht sowohl tabellarisch als auch graphisch dargestellt.

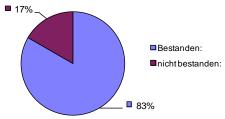
Da die Darstellung der Durchfallquoten für alle Ringversuchsteilnehmer möglicherweise ein falsches Bild für die Stellen mit einer Bekanntgabe nach § 26 BImSchG ergibt, wird unterschieden zwischen der Durchfallquote für Stellen nach § 26 BImSchG [Bild 74] und für <u>alle</u> Ringversuchsteilnehmer (Gesamtdarstellung Stellen nach § 26 BImSchG und sonstigen Stellen) [Bild 75].


Durchfallquote für den Ringversuchsbereich "Ermittlung von Staub, Staubinhaltsstoffen"

	Durchfallrate in %			
Teilbereich des Ringversuches	alle RV- Teilnehmer	Stellen nach § 26 BlmSchG		
Tembereich des Kingversuches	1 cilile illilei	Billiocilo		
Ermittlung von Stäuben	33%	29%		
Ermittlung von Staubinhaltsstoffen	67%	64%		

Tabelle 26

Bild 74



Durchfallquote für den Ringversuchsbereich "anorganischer Gase und organische Verbindungen"

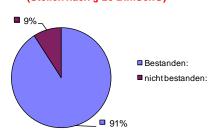
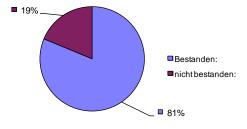
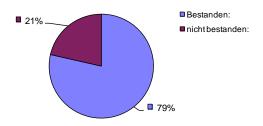
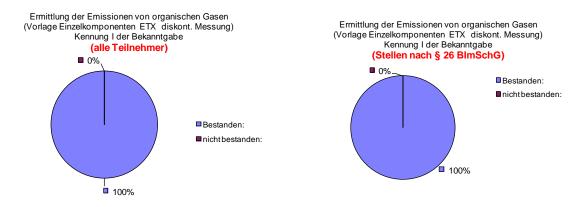

	Durchfallrate in %			
Teilbereich des Ringversuches	alle RV-Teilnehmer	Stellen nach § 26 BlmSchG		
anorganischen Gasen	17%	8%		
organischer Verbindungen (Propan und ETX)	19%	21%		
organischer Verbindungen (ETX)	0%	0%		
organischer Verbindungen (Propan)	0%	0%		

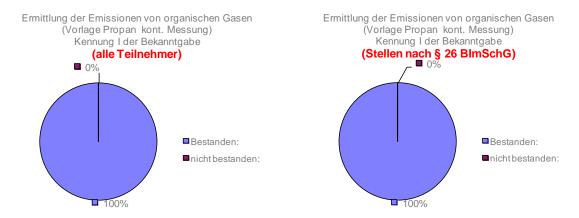
Tabelle 27



Ermittlung der Emissionen von anorganischen Gasen Kennung A der Bekanntgabe (Stellen nach § 26 BlmSchG)




Bild 76

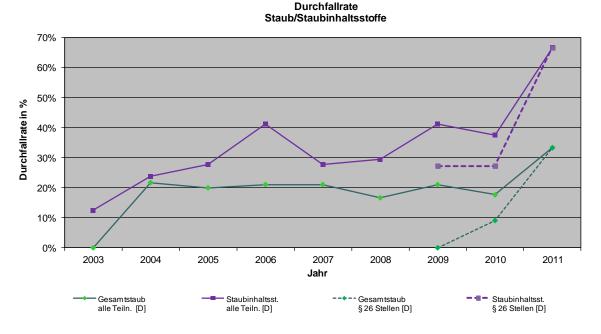

Ermittlung der Emissionen von organischen Gasen (Vorlage Propan und ETX kont. Messung) Kennung I der Bekanntgabe (Stellen nach § 26 BlmSchG)

Die nachfolgenden Graphiken in Bild 79 zeigen die Ergebnisse für die kont. Ermittlung der Emissionen organischer Verbindungen bei der Vorlage von Propan.

Diese Untersuchungen gingen nicht in die Bewertung ein.

Bild 79

Die Ergebnisse für die reine Propanuntersuchung sollten zur Lokalisierung eventueller Fehler bei der Untersuchung mit dem organischen Komponentengemisch herangezogen werden. Der Vergleich der beiden Gesamt-C Untersuchungen im Bezug auf die Durchfallquote (a. Propan Graphik 79 und b. Propan mit organischen Einzelkomponenten Bild 77) zeigt wie bereits in den letzten Jahren eine höhere Durchfallquote für das Komponentengemisch.


7 Interpretation

Ein abschließender Vergleich der Ergebnisse aus 2011 mit den Ergebnissen der letzten Jahre zeigt für den Ringversuchsbereich "Ermittlung von Staub, Staubinhaltsstoffen und an Staub adsorbierten chemischen Verbindungen" [Kennung D der Bekanntgabe], dass sich die Ergebnissituation im Jahr 2011 gegenüber den Vorjahren unter Berücksichtigung aller Ringversuchsteilnehmer verschlechtert hat. Die Quote der nicht bestandenen Ringversuche für den Bereich "Staub" hat sich für das Berichtsjahr 2011 im Vergleich zu 2010 um 15% auf 33% verschlechtert.

Im Teilbereich "Staubinhaltsstoffe" hat sich die Ergebnissituation im Jahr 2011 gegenüber den Vorjahren ebenfalls stark verschlechtert. Unter Berücksichtigung

<u>aller</u> Ringversuchsteilnehmer stieg die Durchfallquote für das Berichtsjahr 2011 auf 67% und hat sich somit annähernd verdoppelt. Diese Durchfallquote bei der analytischen Untersuchung von Schwermetallen ist aus qualitativen Gesichtspunkten nicht akzeptabel.

Zur besseren Übersicht wurden die Durchfallquoten der einzelnen Berichtsjahre nachfolgend graphisch zusammengefasst und ab dem Jahr 2009 erstmals auch getrennt dargestellt.

Bild 80

Für den Bereiche "Ermittlung der Emission anorganischer Gase" [Kennung A der Bekanntgabe] ist ein Anstieg der Durchfallquote von 6% im Jahr 2008, über 11% (alle Ringversuchsteilnehmer) bzw. 14% (Stellen nach § 26 BlmSchG) im Jahr 2009 auf 20% (alle Ringversuchsteilnehmer) bzw. 17% (Stellen nach § 26 BlmSchG) im Jahr 2010 bis hin zu 17% im Berichtszeitraum (2011) zu verzeichnen. Das bedeutet eine leichte Qualitätsverbesserung zum Vorjahr für diesen Bereich.

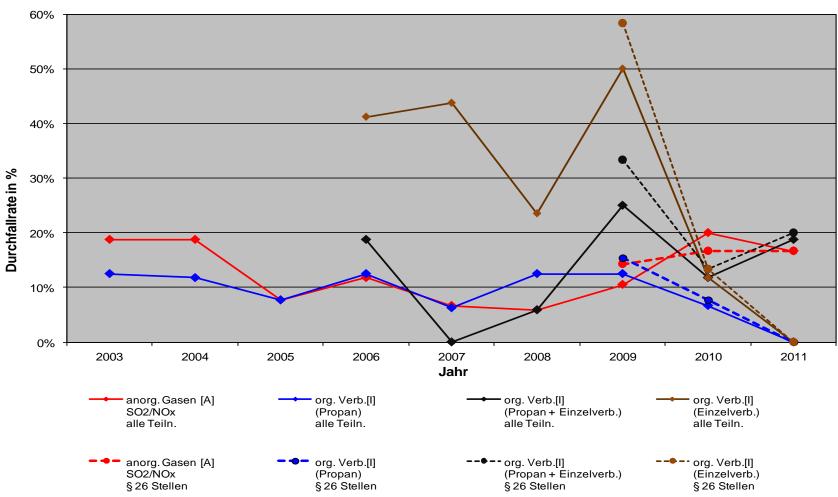
Für den Bereich "Ermittlung der Emissionen organischer Verbindungen" [Kennung I der Bekanntgabe] konnte im Berichtsjahr ein leichter Anstieg an Qualitätsdefizit im Vergleich zum Vorjahr festgestellt werden.

Für den Teilbereich "Gesamt-C" durch kontinuierliche Ermittlung von organischen Einzelkomponenten und Propan als Gemisch stieg die Durchfallquote von 12% (alle Ringversuchsteilnehmer) bzw. 13% (Stellen nach § 26 BlmSchG) im Jahr 2010 auf 18,75% (alle Ringversuchsteilnehmer) bzw. 20% (Stellen nach § 26 BlmSchG) im Berichtszeitraum.

Eine sehr erfreuliche Entwicklung ist für den Bereich "Ermittlung der Emissionen organischer Verbindungen" [Kennung I der Bekanntgabe] Teilbereich "organische Einzelkomponenten" festzustellen. In diesem Bereich ist die Durchfallquote von 24% im Jahr 2008 über überproportionale 50% (alle Ringversuchsteilnehmer) bzw. 58% (Stellen nach § 26 BImSchG) im Jahr 2009 auf 12% (alle Ringversuchsteilnehmer) bzw. 13% (Stellen nach § 26 BImSchG) bis hin zu 0% (alle Ringversuchsteilnehmer) bzw. 0% (Stellen nach § 26 BImSchG) im Berichtsjahr 2011 zurück gegangen.

In den vergangenen Jahren stellte sich immer wieder die Frage nach der Beherrschung des Gesamtverfahrens im Allgemeinen und der analytischen Auswertung im Besonderen.

Nach wie vor ist an den Ergebnissen zu erkennen, siehe Graphik in Bild 56 (Toluol) und Bild 64 (Summe Xylol), dass es für die Komponenten Toluol und Xylol einen Trend zu Minderbefunden gibt. Die Abweichung liegt aber nicht mehr in einem so großen Fenster wie dies in den vergangenen Jahren zu beobachten war. Für Ethylbenzol (Bild 60) ist wie bereits in der Vergangenheit eine Gleichverteilung zu erkennen. Die engeren Grenzen der Abweichungen der abgegebenen Ergebnisse zu Mehr- bzw. Minderbefunden machen sich bei der Bewertung durch das HLUG als Ausrichter der Ringversuche deutlich bemerkbar.


Fazit: Eine wesentlich größere Anzahl von Teilnehmern liegt unter Einbezug der Präzisionsvorgaben im Bereich von z-Score 1 für die jeweiligen Konzentrationsbereiche und konnte diesen Teilbereich erfolgreich abschließen.

Ein Grund für die Verbesserung der Qualität in diesem Bereich liegt vermutlich auch an der Teilnahme an den hier beschriebenen Ringversuchen. In den vergangenen Jahren wurden die niedrige Frequenz von Emissionsmessungen in diesem Bereich und die damit fehlende Routine als ein Grund für die schlechten Ergebnisse angesehen. Der Erfolg bei den Ringversuchen zeigt, dass jeweils getroffenen Maßnahmen wirkungsvoll umgesetzt wurden.

Vom HLUG wurde jeweils zu den Ringversuchen ein Referenzstandard zur Verfügung gestellt. Die Untersuchungsergebnisse der Standards ermöglichen Rückschlüsse auf ggf. analytische Fehler. Es wird daher auch weiterhin an der zusätzlichen Untersuchung eines Referenzstandards festgehalten.

In der folgenden Grafik ist der Verlauf der Ergebnisse der Ringversuche für gasförmige Stoffe seit dem Jahr 2003 dargestellt. Deutlich zu erkennen ist der nicht nachvollziehbare Einbruch der Qualität im Jahre 2009 in einigen Bereichen welcher sich in den Jahren 2010 und 2011 nicht bestätigte.

Durchfallrate gasförmige Emissionskomponenten

8 Schlussbemerkung

Die beim HLUG an der ESA durchgeführten Ringversuche besitzen qualitätssichernden Charakter für die nach §26 BImSchG bekannt gegebenen Stellen. Es wird die Beherrschung von Probenahmeverfahren überprüft und trainiert. Die Ergebnisse der Gasringversuche zeigen im Berichtsjahr 2011 eine Verbesserung im Vergleich zum Jahr 2010.

Eine wesentliche Verschlechterung zu den Vorjahren ist beim Ringversuch Staub im Berichtsjahr 2011 insbesondere bei der Analyse der Schwermetalle festzustellen.

Um in diesem Bereich Hilfestellung zu geben wurde Anfang 2012 jeder in der Bundesrepublik Deutschland nach § 26 BlmSchG für diesen Bereich bekannt gegebenen Stelle eine schwermetalldotierte Prüfstaubprobe zugesandt (Programm 258). Durch Ringanalyse und Feststellung des Sollwertes durch statistische Berechnung soll jeder Stelle ein Instrument an die Hand gegeben werden um Defiziten in der Analytik vorzubeugen und mögliche Fehler zu eliminieren.

Gerade aber diese Schwankungen in der Qualität der Arbeiten der nach §26 BImSchG bekannt gegebenen Stellen zeigt wie wichtig die Teilnahme an dieser besonderen Art der Ringversuche letztendlich ist.

Insbesondere die bei diesen Veranstaltungen durchzuführende Probenahme durch die Teilnehmer, und die ist wesentlicher Bestandteil des Ringversuches, gibt den Messstellen die Möglichkeit ihre Performance zu überprüfen.

Den nach § 26 BlmSchG bekannt gegebenen Stellen wird empfohlen die im DIN EN ISO/IEC 17025 Rahmen ihrer Akkreditierung nach festgelegten Qualitätskriterien Arbeitsanweisungen nachhaltig und umzusetzen festgefahrener mit bekanntermaßen einhergehenden Routine Fehlern entgegenzuwirken.

Den nicht nach § 26 BlmSchG bekannt gegebenen nationalen und internationalen Stellen oder Einrichtungen die freiwillig an Emissionsringversuchen teilnahmen, die ggf. über eine Akkreditierung verfügen oder ein QS-System schreiben wird empfohlen, generell nach validierten Normen zu arbeiten. Für diesen Bereich liegen zunehmend europäische Normen vor, die diesen Stellen zugänglich und zum Teil bereits verbindlich sind. Grundsätzlich sind diese Normen durch die jeweilige Untersuchungsstelle zu verifizieren und als Standardarbeitsanweisung in das Qualitätssicherungssystem zu integrieren.

Die in der Norm DIN EN ISO/IEC 17025 geforderte regelmäßige Teilnahme an Ringversuchen, zur Kontrolle der Qualität der Emissionsmessstellen und das damit verbundene Training an einer Anlage wie der ESA wird daher auch in Zukunft fester Bestandteil bei der Überwachung bleiben müssen.

Kassel, den 07.Nov. 2012

Bearbeiter

HESSISCHES LANDESAMT FÜR UMWELT UND GEOLOGIE

Im Auftrag

gez. M. Gerhold

gez. G. Dörger

(M:Gerhold) Techn. Angest. (Dipl.-Physiker G. Dörger) Dezernatsleiter

9 Literaturverzeichnis

- /1/ Eickhoff, W.; Huckfeldt, U.; Kaletta, G.: Messtechnische Qualitätssicherung durch Ringversuche zur Bestimmung von Staub und Staubinhaltsstoffen. WLB Wasser, Luft und Boden, 4/1995, S. 56 57
- /2/ Eickhoff, W.; Kaletta, G.: Ringversuche zur Qualitätssicherung von Emissionsmessungen an der Emissionssimulationsanlage in den Jahren 1994 - 1996, Schriftenreihe der Hessischen Landesanstalt für Umwelt, Heft 245, 1997
- /3/ Eickhoff, W.; Kaletta, G.: Ringversuche zur Qualitätssicherung von Emissionsmessungen an der Emissionssimulationsanlage vom Oktober 1997 bis Dezember 1998, Schriftenreihe der Hessischen Landesanstalt für Umwelt
- /4/ Platt, J.: Diplomarbeit "Validierung von Emissionsmessungen gasförmiger Schadstoffe (Schwefeldioxid, Stickoxide und Propan) an der Emissionssimulationsanlage zur Ermittlung der Gesamtunsicherheit und zur Übertragung auf Ringversuche mit Messstellen nach § 26 BImSchG", März - Juni 2000
- /5/ Deutsche Norm DIN EN 1822, "Filterklasse"
- /6/ Jungermann, Markus: Diplomarbeit "Ermittlung der Gesamtunsicherheit von Messungen partikelförmiger Schadstoffe an der Emissionssimulationsanlage durch Validierung der Fehlerquellen zur Übertragung auf qualitätssichernde Ringversuche mit Stellen nach § 26 Bundes-Immissionsschutzgesetz (BImSchG)", Mai 1996
- 17. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes Verordnung über Verbrennungsanlagen für Abfälle und ähnliche brennbare Stoffe (17. BImSchV)
- /8/ Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft vom 24. Juli 2002)
- /9/ Deutsche Norm DIN EN 24185, August 1993, "Filterklasse"
- /10/ Deutsche Norm DIN 1319, Teil 3, August 1993 "Grundbegriffe der Messtechnik. Begriffe für die Messunsicherheit und für die Bewertung von Messgeräten und Messeinrichtungen"
- /11/ /Deutsche Norm DIN ISO 5725 (E), Teil 1, Ausgabe 1991, Seite 17 "Genauigkeit von Messverfahren"
- /12/ /F. E. Grubbs, G. Beck: "Extension of sample sizes an percentage points for significance tests of ant lying observations"
- /13/ Richtlinie VDI 2449, Blatt 1, Februar 1995 "Ermittlung der Verfahrenskenngrößen für die Messung gasförmiger Schadstoffe"
- /14/ Deutsche Norm DIN ISO 6879, Januar 1984 "Verfahrenskenngrößen und verwandte Begriffe für Messverfahren zur Messung der Luftbeschaffenheit"
- /15/ /Deutsche Norm DIN ISO 9169, August 1996 "Bestimmung der Verfahrenskenngrößen von Messverfahren"
- /16/ Deutsche Norm DIN 38 402, Teil 42, Ausgabe Mai 1982 "Ringversuche, Auswertung"
- /17/ ISO/REMCO N 280 "Proficiency testing of chemical analytical Laboratories; siehe auch: Pure & Appl. Chem. Vol. 65, Nr. 9 (1993), pp 2123 2124
- /18/ Thomson, M.; Wood, R.: Journal of AOAC International 76, (1993), pp 929 940
- /19/ DIN EN 13284-1 vom April 2002 "Ermittlung der Staubmassenkonzentration bei geringen Staubkonzentrationen. Teil 1: Manuelles gravimetrisches Verfahren"
- /20/ Richtlinie VDI 2456, November 2004 "Messen gasförmiger Emissionen; Bestimmung der Summe von Stickstoffmonoxid und Stickstoffdioxid; Ionenchromatographisches Verfahren"
- /21/ DIN EN 14792, April 2006 "Bestimmung der Massenkonzentration von Stickstoffoxiden (NOx) Referenzverfahren: Chemilumineszenz; Deutsche Fassung EN 14792:2005
- /22/ AQS-Merkblatt zu den Rahmenempfehlungen der Länderarbeitsgemeinschaft Wasser (LAWA) für die Qualitätssicherung bei Wasser-, Abwasser- und Schlammuntersuchungen P- 11 "Bestimmung von Chlorid, Nitrat, Sulfat und Sulfid in Wässern mit der Ionenchromatographie"

- /23/ Richtlinie EN 14791, April 2006, Emissionen aus stationären Quellen Bestimmung der Massenkonzentration von Schwefeldioxid (Referenzverfahren)"
- /24/ Richtlinie VDI 2457 Bl. 1 Nov. 1997 "Messen gasförmiger Emissionen. Chromatographische Bestimmung organischer Verbindungen. Grundlagen
- /25/ Richtlinie VDI 2457 Bl. 1 Nov. 1997 "Messen gasförmiger Emissionen. Chromatographische Bestimmung organischer Verbindungen. Probenahme durch Adsorption an festen Sammelphasen
- /26/ Richtlinie DIN EN 12619, September 1999 "Bestimmung der Massenkonzentration des gesamten gasförmigen organisch gebundenen Kohlenstoffs in geringen Konzentrationen in Abgasen Kontinuierliches Verfahren unter Verwendung eines Flammenionisationsdetektors (FID)"
- /27/ Richtlinie DIN EN 15259:2008 Luftbeschaffenheit Messung von Emissionen aus stationären Quellen Anforderungen an Messstrecken und Messplätze und an die Messaufgabe, den Messplan und den Messbericht; Deutsche Fassung
- /28/ Küster-Thiel-Fischbeck.: "Rechentafel für die Chemische Analytik". 102. Auflage. W. de Gruyter-Verlag.
- /29/ Landolt-Börnstein, 6. Auflage, Band II/2a, Abschn. 2211.
- /30/ Richtlinie VDI 4200, Dezember 2000 "Durchführung von Emissionsmessungen an geführten Quellen.
- /31/ Richtlinie DIN EN 14385:2004 Emissionen aus stationären Quellen Bestimmung der Gesamtemission von As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, TI und V
- /32/ Richtlinie VDI 2066 November 2006 "Messen von Partikeln. Staubmessung in strömenden Gasen. Gravimetrische Bestimmung der Staubbeladung"
- /33/ Durchführungsbestimmungen für Ringversuche von § 26-Messstellen (partikelgebundene Emissionskomponenten) Stand Juni 2007
- /34/ Durchführungsbestimmungen für Ringversuche von § 26-Messstellen (gasförmige Emissionskomponenten) Stand Juni 2007