Messung ultrafeiner Partikel im Umfeld des Frankfurter Flughafens

Stefan Jacobi a, Holger Gerwig b, Wilma Travnicek a, Klaus Wirtz b

^a HLNUG, Wiesbaden

^b Umweltbundesamt, Langen

Informationen zum Thema UFP Fluglärmkommission, 28. September 2016

Einleitung / Motivation

- Rechtliche Lage (2008/50/EU):
 Beurteilung der Partikelbelastung nach Massenkonzentration
 Grenzwerte für PM₁₀ und PM_{2.5}
- "Proxy" hinreichend zur Charakterisierung der Belastung?
- Wirkungsforschung: physik. / chem. Differenzierung gefragt
- Wissenslücke! (Keine Anforderung ⇔ keine Messung , Henne und Ei …)

Einleitung / Motivation

- Ultrafeine Partikel (d<100 nm) verstärkt in der Diskussion
- Gesundheitsrelevanz in verschiedenen Studien gezeigt aber Wissensstand noch unzureichend (im Vergleich zu PM₁₀/PM_{2.5})
- Neben "physikalischer Einwirkung", Eintrag anhaftender toxischer Verbindungen insbesondere verschiedene Metalle, PAH, Endotoxine
- Besondere Problematik:
 Berichte über erhöhte UFP-Konzentrationen auch im weiteren Umfeld von Flughäfen

Einleitung / Motivation

Vielfältige Quellen

anthropogen in erster Linie: Verbrennungsprozesse (Verkehr (inkl. Flugverkehr), Hausbrand, Industrie, Kleingewerbe ...)

und: sekundär gebildet aus den primär freigesetzten Gasen (gas to particle conversion)

HLNUG

© Steve Mann - Fotolia.com

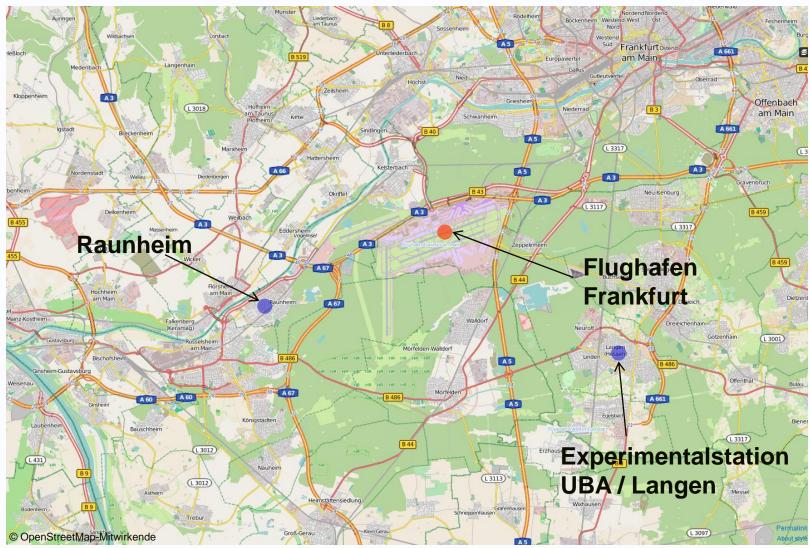
HLNUG

Standort / Instrumentierung

Luftmessstation Raunheim

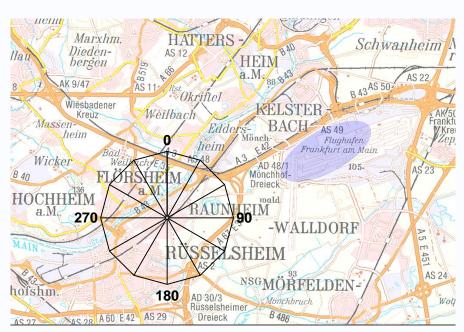
Betrieb seit 1976

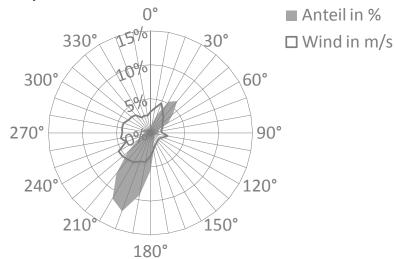
Charakter: urbaner Hintergrund


ca. 6 km SW vom Flughafen Frankfurt

Standort / Instrumentierung

Standort / Instrumentierung


- Start: 3. September 2015
- Eingesetztes Gerät: UCPC TSI 3776 mit Labview-Programm (UBA)
- Messbereich: 3 1000 nm
- o Probenahme 1m³/h, 14tägige Wartung
- PM₁-Vorabscheider (Aerosolsplitter, TROPOS)
- Abgasreinigung durch katalytische Verbrennung
- Datenübertragung an UBIS-Datenbank des HLNUG
- Zusätzlich erhobenen Daten:
 NO/NO₂, CO, Ruß, PM₁₀, O₃, SO₂, C₆H₆, C_nH_m, meteorologische Größen



Gerwig/UB/

Windverhältnisse am Frankfurter Flughafen (Station des DWD)

Karte: Bundesamt für Kartographie u. Geodäsie, Frankfurt a.M.

Hauptwindrichtung SSW und NNE

Sept. 2015 - März 2016

Vergleich der mittleren und maximalen UFP-Konzentrationen mit anderen Schadstoffen an der Station Raunheim September 2015 – März 2016

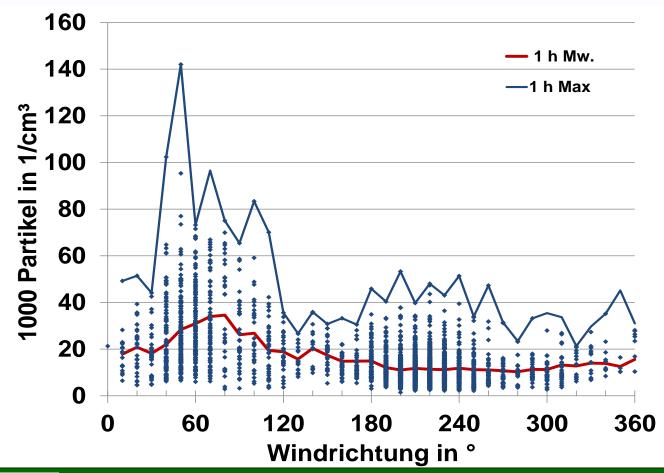
	Einheit	Mittel	Max. 1h- Wert	Max. 5 sec-Wert
UFP	$1/cm^3$	16.100	142.000	485.000
Ruß	$\mu g/m^3$	1,6	11,6	26
NO	$\mu g/m^3$	21,9	319	628
NO_2	$\mu g/m^3$	29,6	98	182
CO	mg/m^3	0,37	1,87	
PM_{10}	$\mu g/m^3$	18,6	93,1 (477*)	
SO_2	μ g/m ³	1,3	9,7 (11,3*)	

^{*:} Silvesternacht

Vergleich der bisher gemessenen UFP-Konzentrationen mit ausgewählten anderen Messorten

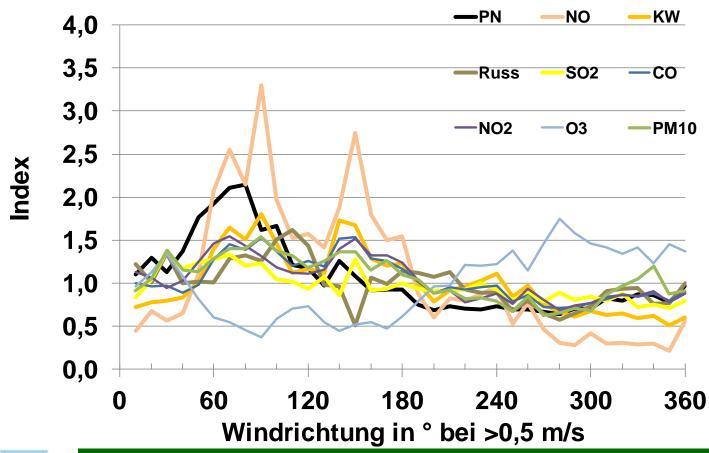
Ort	Stations-typ	Mess- bereich (nm)	Mittel (1/cm³)	Median (1/cm³)	Max. 1h-Wert (1/cm³)	Mittelungs- zeitraum
Raunheim	urb. HG	3 - 1000	16.100	12.300	142.0000	$09.15 - 03.16^{1}$
Langen	urb. HG	3 - 1000	12.200	10.500	67.000	$2010 - 2013^2$
Berlin	urb. HG	4,5 – 1000	8.700	7.700	49.000	05 08.14 ³
Dresden	Verkehr	5 - 800	14.923			$2010 - 2013^4$
Leipzig	Verkehr	5 - 800	16.321			$2010 - 2013^4$
Melpitz	ländl. HG	5 - 800	5.651			$2010 - 2013^4$

¹diese Arbeit

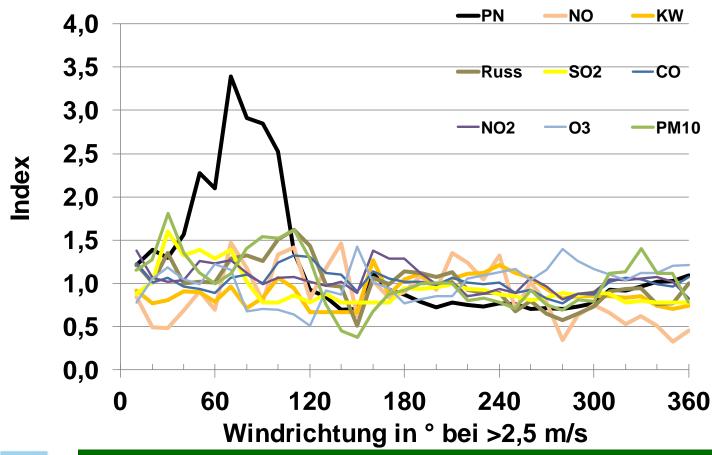


³Schneidermesser et al. (2016)

²Gerwig et al. (2014)


⁴LfULG (2016)

UFP-Konzentrationen in Abhängigkeit von der Windrichtung



UFP und andere Schadstoffe in Abhängigkeit von der Windrichtung bei Windg. >0,5 m/s Index: Verhältnis [MW pro 10°Sektor/MW gesamt],

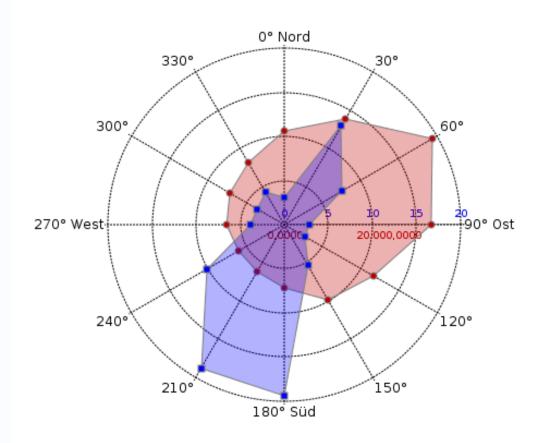
UFP und andere Schadstoffe in Abhängigkeit von der Windrichtung bei Windg. >2,5 m/s Index: Verhältnis [MW pro 10°Sektor/MW gesamt],

Station Raunheim

Windrichtungsverteilung (%-ualer Anteil Wind aus Richtung ...)

und

Konzentrationswindrose (mittl. Konz. bei Wind aus Richtung ...)

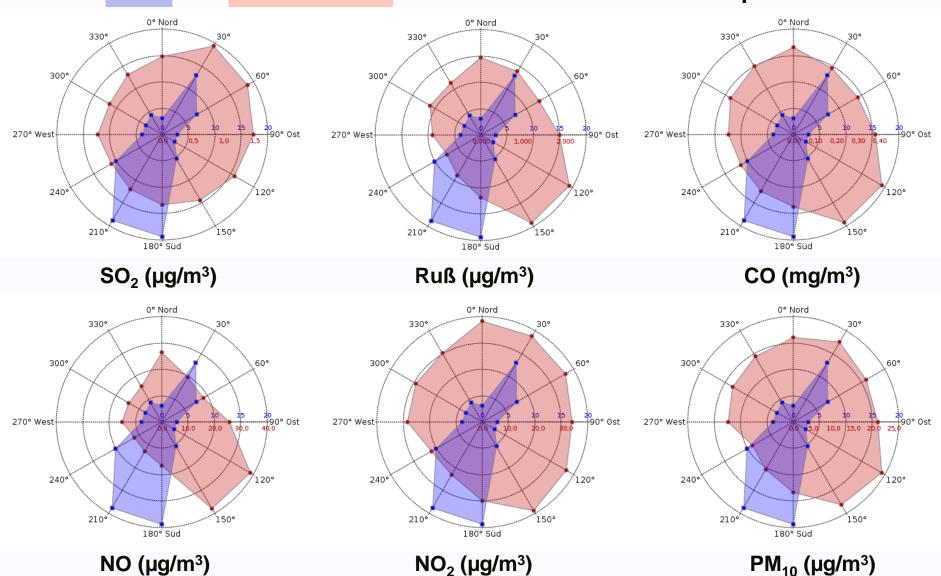

für UFP

Skalierung

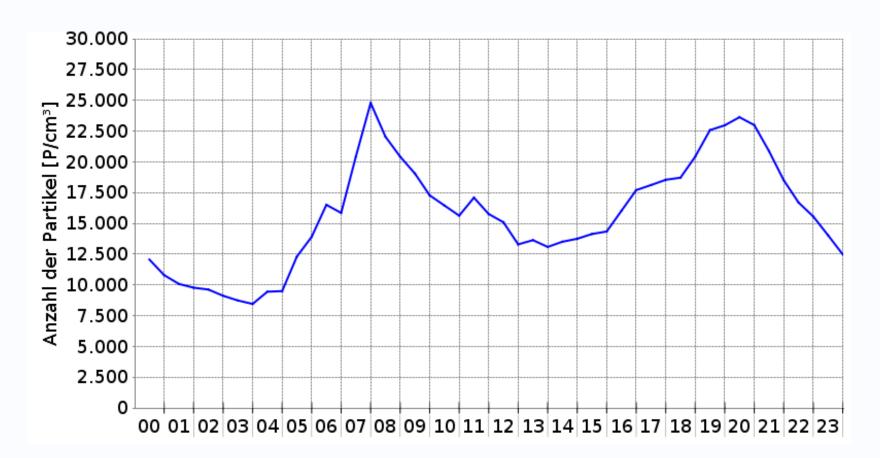
Windrichtung: 5 %

UFP: 8400 P/cm³

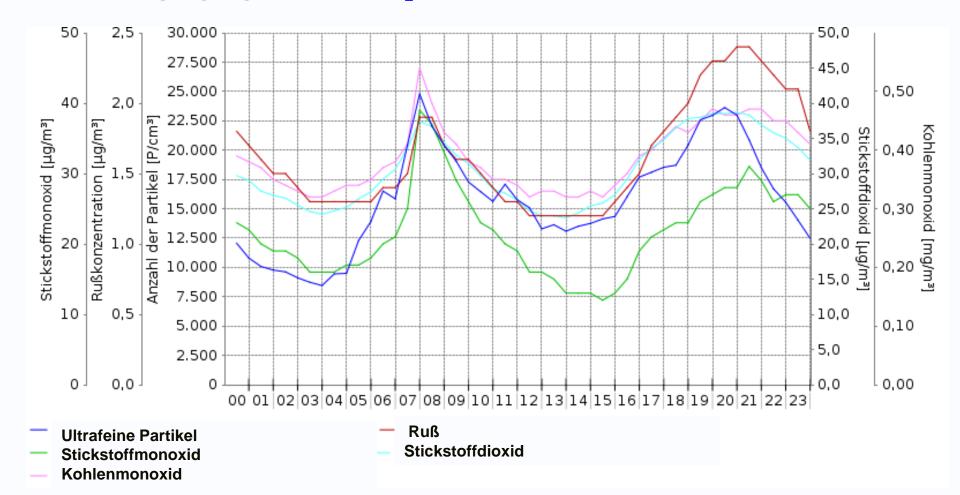
September 2015 - März 2016



🖚 Raunheim/Windrichtung [%] 🔷 Raunheim/Anzahl der Partikel [P/cm³]

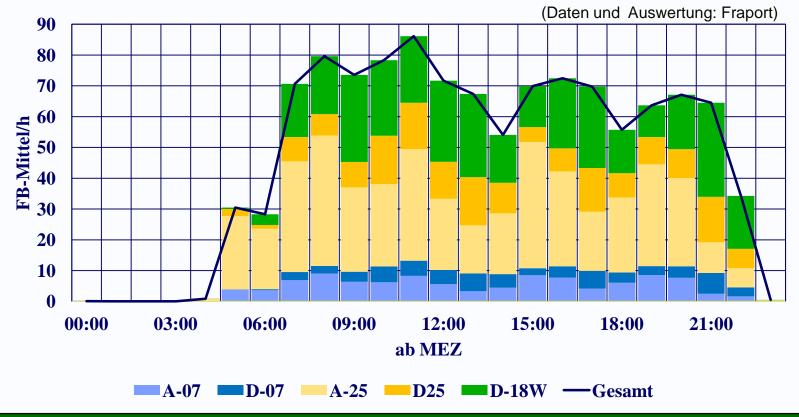


Wind- und Konzentrationswindrose verschiedener Komponenten

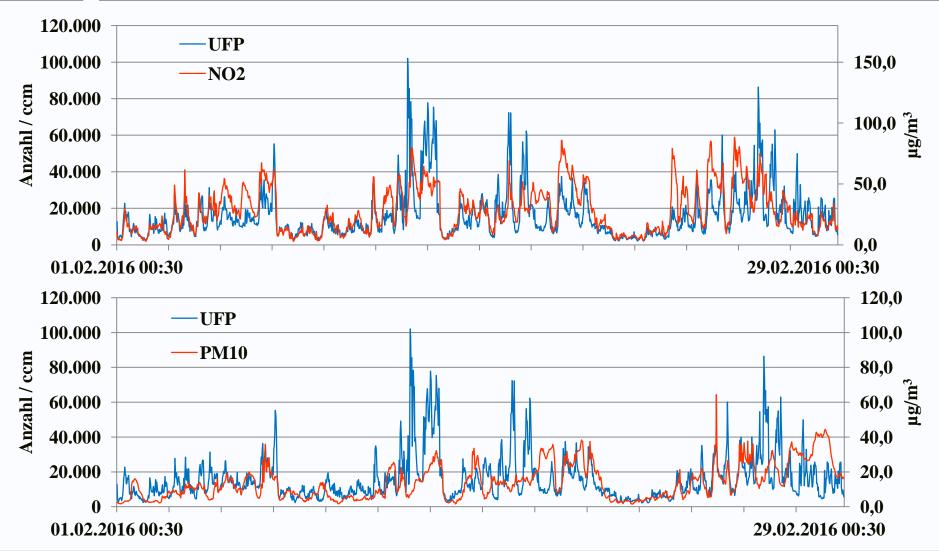


Mittlerer Tagesgang UFP, 1/2h-Werte, 19.11.15 – 31.3.16

Mittlerer Tagesgang UFP, NO, NO₂, CO und Ruß, 19.11.15 – 31.3.16



Mittlerer Tagesgang aller Flugbewegungen, 01.11.15 – 31.3.16


A: arrival / D: departure

Betriebsrichtung: 07 (Ostwind) / :25 (Westwind)

D-18W: Startbahn 18 West

Zusammenfassung

- ➤ Erste Ergebnisse (ca. 6 Monate) zeigen eine mittlere Belastung von ca. 16.000 P/cm³.
- ➤ UFP-Konz. liegen im Mittel um ca. 30% höher im Vergleich zum langjährigen MW an der Experimentalstation Langen (UBA)
- Andere Untersuchungen mit ähnlichem Standortcharakter weisen teilweise auch deutlich niedrigere Belastungen auf.
- ➢ Sehr kurzfristig (5 sec) können Werte von einigen 100.000 P/cm³ erreicht (Max: 485.000)
- Eingeschränkte Vergleichsmöglichkeiten (z. B. Mittelungszeitraum, Größenspektrum) sind jedoch zu beachten
- ➢ Bei Wind aus östlichen Richtungen (besonders NE/E) werden erhöhte UFP-Konzentrationen gemessen

Zusammenfassung

- Dies deutet auf einen möglichen Transport UFP aus dieser Richtung hin
- ➤ Im Vergleich zu Windrichtungen aus SW waren die Konzentrationen um einen Faktor 2,7 3,7 höher.
- ➤ Bei höheren Windgeschwindigkeiten (>2,5 m/s) tritt dies ausgeprägter auf als bei niedrigeren (>0,5 m/s)
- Dieses Phänomen tritt nur bei den UFP auf, nicht bei den anderen gemessenen Schadstoffen
- Die UFP zeigen einen ähnlichen Tagesgang wie andere Luftschadstoffe (Maxima am Morgen und am Abend, Minimum um die Mittagszeit)

Zusammenfassung

- für UFP und SO₂ Maximum in NE-licher Richtung (30 60°), für andere Komponenten max. Belastung eher bei Windrichtung SE (120 - 150°)
- Hohe UFP-Konzentrationen treten aber auch bei sehr geringer Häufigkeit östlicher Winde auf
- ▶ generell zu bedenken:
 bei Westwind-Wetterlagen herrschen
 i. d. R. höhere Windgeschwindigkeiten, bessere
 Austauschbedingungen, bessere Verdünnung
 ⇒ tendentiell niedrigere Belastung,
- bei Ostwind-Wetterlagen umgekehrt!

Ausblick

- ✓ Weitere Fortführung und Auswertung der Messungen in Raunheim, ausserdem…
- ✓ Ausweitung auf Messung der Größenverteilung (SMPS), Größenbereich: ca. 10 - < 1000 nm, Differenzierung in bis zu über 100 Größenklassen ...
- ✓ Beschaffungsmaßnahmen eingeleitet (erhebliche Investitionskosten)
- ✓ Fachliches "Neuland"; Unterstützung und Kooperation angestrebt
- ✓ Soweit möglich: verschiedene Stellen, um potentiellen Einfluss (Flughafen, andere Quellen (z.B. Straßenverkehr?)) besser erfassen und beurteilen zu können
- ✓ Offene Fragen: Quellenzuordnung? Größe der Beiträge verschiedener Quellen?
- ✓ Keine "schnellen und eindeutig abschließende Antworten" zu erwarten …

Umwelt **†** Bundesamt