

Das Januar-Hochwasser 2011 in Hessen

Bearbeiter:

Dirk Bastian, Klaus Göbel, Wolfgang Klump, Matthias Kremer, Patricia Lipski, Cornelia Löns-Hanna

Inhalt:

- Witterungsverlauf
- Allgemeiner Hochwasserverlauf
- Hochwasserverläufe in einzelnen Flussgebieten
- Einsatz von Talsperren und Hochwasserrückhaltebecken
- Vergleich der Hochwasservorhersagen mit der tatsächlichen Hochwasserentwicklung
- Zusammenfassung

Vorwort

Im Januar 2011 trat im Zeitraum vom 6.1. bis 22.1. in nahezu allen hessischen Gewässern wie auch in zahlreichen Gewässern in Deutschland und angrenzenden europäischen Ländern Hochwasser auf. Ursache hierfür war das Abschmelzen der Schneedecke, die ganz Hessen bedeckte, durch starke Temperaturanstiege verbunden mit einsetzenden Niederschlägen. Die Schmelzwassermenge ließ die Gewässerabflüsse stark ansteigen. Eine Woche später sorgten erneut intensive Regenfälle für eine zweite Hochwasserwelle.

Im vorliegenden Bericht wird das Hochwasserereignis aus hydrologischer Sicht beschrieben und ausgewertet. Grundlage sind die Wasserstands- und Abflussmessungen an repräsentativen Pegeln. Das Hochwasser wird für die einzelnen Gewässer hinsichtlich der Wiederkehrintervalle (Jährlichkeiten) eingeordnet.

Witterungsverlauf

Bilder 1 und 2: Verschneite Taunuslandschaft

Im Dezember 2010 wurden weite Teile Deutschlands von Hochdruckeinflüssen über dem nordostatlantisch-nordeuropäischen Raum und Tiefdruckgebieten über Südwesteuropa und dem Mittelmeer dominiert. Die damit einhergehende skandinavische Kaltluft führte in Hessen nach Angaben des DWD im Dezember zu einer außergewöhnlich niedrigen mittleren Lufttemperatur von -3,5°C. Die Niederschlagssumme lag mit 85 mm deutlich über dem langjährigen Mittel (78 mm), wodurch sich auch in tieferen Lagen erhebliche Schneehöhen akkumulierten.

Infolgedessen war nahezu ganz Hessen zu Beginn des Januars von einer Schneedecke überzogen. In den Hochlagen der hessischen Mittelgebirge traten Schneedecken mit Höhen zwischen 40 und 100 cm auf, im Westerwald und im Rothaargebirge vereinzelt auch über 100 cm. Die in der Schneedecke gespeicherten Wasseräquivalente betrugen in tieferen Lagen rund 40 mm, in mittleren Höhenlagen 60 – 120 mm und in den Hochlagen bis über 150 mm. Die Lufttemperaturen lagen im Zeitraum von Ende November bis zu Beginn des Jahres 2011 unterhalb bzw. nur knapp oberhalb des Gefrierpunktes.

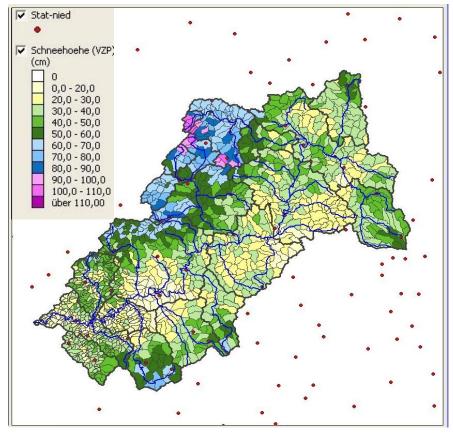


Bild 3: Schneehöhen zu Beginn des Tauwetters Anfang Januar im Lahngebiet (Darstellung aus dem Hochwasservorhersagemodell LARSIM vom 6.1.2011)

Nach dem Jahreswechsel brachten atlantische Tiefausläufer milde und feuchte Luftmassen aus südöstlicher Richtung. Diese sorgten ab dem 6. Januar 2011 schließlich für rasch einsetzendes Tauwetter bis in die höheren Lagen der Mittelgebirge.

Vom 6. bis zum 7. Januar 2011 stiegen die Temperaturen um bis zu 15 Grad auf Werte von 8°C bis 10 °C an. Hinzu kamen starke Niederschläge. An der Station Hochwaldhausen (Vogelsbergkreis) wurden z. B. alleine an den Tagen 6.,12. und 13. Januar Niederschlagssummen in Höhe von 37,5 mm, 22,4 mm und 38,9 mm gemessen. Dies führte zu einem raschen Anstieg der Wasserstände nahezu aller hessischen Gewässer. Im Zeitraum vom 7.1. bis zum 9.1.2011. lief die **erste Hochwasserwelle** ab.

Ursache für die Temperaturerhöhungen und die teils ergiebigen Niederschläge war laut Deutschem Wetterdienst (DWD) ein umfangreicher Tiefdruckkomplex, der sich vom Nordmeer bis zur Biskaya erstreckte. Hierdurch strömten vom Atlantik milde, feuchte Luftmassen nach Hessen. Es wurden erheblich Niederschlagshöhen gemessen, so fielen z.B. in Mittelhessen Niederschläge von über 20 mm, in Hochwaldhausen im Vogelsberggebiet wurden 36 mm registriert.

Lufttemperatur [°C] Tagesmittelwerte Januar 2011

15
10
5
0
-5
-10

Frankfurt am Main/ Flughafen Fulda Gießen-Wettenberg

Bild 4: Lufttemperatur an drei Messstellen in Hessen vom 1. bis 20. Januar (Quelle: DWD)

In der Zeit vom 8. bis zum 10. 1. sanken die Temperaturen wieder auf Werte bis zu unter 0°C. Die Niederschläge wurden schwächer. In höheren Lagen gingen sie zum Teil erneut in Schnee über. Durch große Regenmengen vom 12. bis zum 15.1.2011, die auf noch hohe Abflüsse in den hessischen Gewässern trafen, entwickelte sich eine **zweite Hochwasserwelle**.

Wie dem Radarbild des DWD vom 13.1. zu entnehmen ist, überquerten umfangreiche Regengebiete Hessen. Gleichzeitig stiegen die Temperaturen wieder auf Werte von über 10 °C an. An den hessischen Niederschlagsmessstationen wurden wiederum große Regenmengen registriert. So fielen am 13.1. in den hessischen Mittelgebirgen wie Rhön, Spessart und Odenwald Niederschläge von 10 bis 20 mm, im Westerwald und im Vogelsberg lagen sie teilweise darüber. Auch am Freitag, den 14.1. dauerten die ergiebigen Regenfälle an. Z.B. fielen im Vogelsberg 30 bis 40 mm. Im Odenwald traten die vom DWD prognostizierten unwetterartigen Niederschläge nicht in dem Maße ein, sie lagen zwischen 8 und 20 mm. Nur im Südosten fielen vereinzelt mehr als 40 mm.

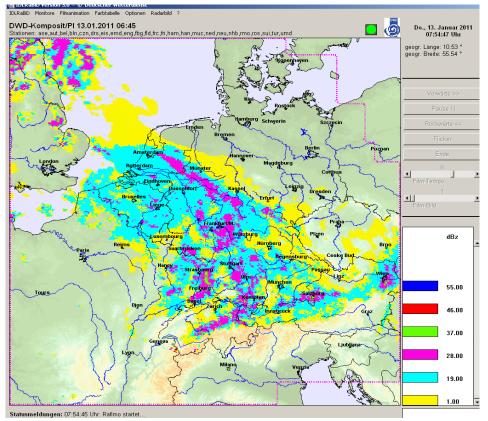


Bild 5:Niederschlags-Radarbild vom 13.1.2011, 6:45 Uhr (Quelle: DWD)

Tagesniederschlagssummen Januar 2011 (mm/d)

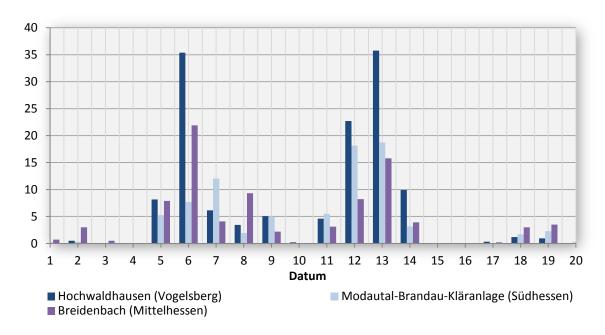


Bild 6: Niederschlag an ausgewählten hessischen Stationen

Ab dem 16.1. gelangten kühlere Luftmassen nach Hessen. Es fielen nur noch gelegentlich Niederschläge, die in den Höhenlagen in Schnee übergingen. Die Hochwasserlage entspannte sich in den meisten hessischen Gewässern.

Allgemeiner Hochwasserverlauf

Das Hochwasser im Januar 2011 lief in Hessen in zwei Wellen ab. Am 7.1. stiegen die Wasserstände infolge von Schneeschmelze und Niederschlägen stark an. Bei dieser **ersten Hochwasserwelle** wurden vielerorts in Hessen Hochwassermeldestufen überschritten. Besonders im Fulda-, Werra- und Lahngebiet wurde an vielen Pegeln die Meldestufe III erreicht. Die Schwerpunkte der Hochwasserentwicklung lagen in den Mittelgebirgsregionen Rhön, Vogelsberg und Rothaargebirge.

Am 12.1. waren nur noch in den Unterläufen einiger hessischer Gewässer Meldestufen überschritten. Ausnahmen bildeten Main, Rhein und Neckar. Hier führten die ablaufenden Wassermengen aus oberliegenden Einzugsgebieten zu steigenden Wasserständen im Main bzw. auf hohem Niveau verharrenden Wasserständen in Rhein und Neckar.

Bilder 7 und 8: Hochwasser am Main bei Kostheim am 15.1.2011

Die ergiebigen Niederschläge über ganz Hessen am 12. und 13.1. führten wiederum in vielen hessischen Gewässern zum erneuten Ansteigen der Wasserstände. Da viele Gewässer noch hohe Abflüsse zeigten, entwickelte sich schnell eine **zweite Hochwasserwelle**.

An vielen Pegeln wurden Hochwassermeldestufen überschritten. Besonders betroffen waren die Oberläufe von Fulda und Kinzig, sowie Haune, Ulster und Weschnitz. Da im weiteren Verlauf keine zusätzlichen Niederschläge fielen, entspannte sich die Hochwasserlage bis auf die großen Gewässer Weser, Rhein, Neckar und Main. In Frankfurt am Main trat z.B. erst am Abend des 18.1. der zweite Hochwasserscheitel auf. In den darauf folgenden Tagen fielen die Wasserstände im Main schnell wieder.

Im Folgenden wird der Verlauf des Hochwasserereignisses in Hessen für die einzelnen Flussgebiete näher beschrieben. Dabei wird auch auf die "Jährlichkeit" des Hochwassers eingegangen.

Jährlichkeit:

Hochwasser werden zumeist mit einer statistischen Bewertung versehen. Grundlage sind langjährige, gemessene Abflussreihen an Pegeln. Im Rahmen einer statistischen Analyse wird die sogenannte Jährlichkeit ermittelt. Diese Jährlichkeit bezeichnet das Wiederkehrintervall. Ein 10-jährliches Hochwasser tritt somit statistisch gesehen einmal in 10 Jahren auf.

Um die betroffenen Gemeinden im Falle einer Hochwassergefahr in die Lage zu versetzen, rechtzeitig entsprechende Gegenmaßnahmen einzuleiten, ist ein Melde- und Warnsystem eingerichtet worden. Dieses System ist in Hessen auf 3 Meldestufen aufgebaut:

Hochwassermeldestufe I	Meldebeginn	bordvoller Abfluss im Gewässer, stellenweise kleine Ausuferungen
Hochwassermeldestufe II	größeres Hochwasser	flächenhafte Überflutung ufernaher Grundstücke, leichte Verkehrsbehinderung auf Gemeinde- und Hauptverkehrsstraßen, Gefährdung einzelner Gebäude, Überflutung von Kellern
Hochwassermeldestufe III	außergewöhnliches Hochwasser	bebaute Gebiete in größerem Umfang überflutet, Sperrung von überörtlichen Verkehrsverbindungen, Einsatz von Deich- und Wasserwehr erforderlich

Bild 9: Hochwassermeldestufen in Hessen

Hochwasserverläufe in den einzelnen Flussgebieten Odenwald und Hessisches Ried

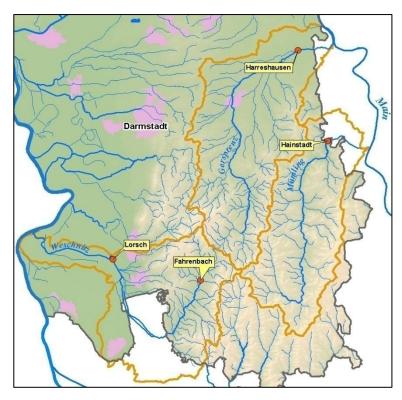


Bild 10: Übersicht Odenwald und Hessisches Ried

Die Hochwasserwellen in den Gewässern des Odenwaldes und im Ried fielen niedriger aus als zunächst auf der Grundlage der Wetterprognosen des DWD erwartet. Die Scheitelwerte der ersten Welle wurden am 7. und 8.Januar und die der zweiten im Zeitraum vom 13. bis zum 15. Januar registriert.

Die Höchstwasserstände in den meisten Gewässern lagen im Bereich der Meldestufe I. Im Oberlauf der Weschnitz wurde die Meldestufe III erreicht. Das Hochwasser der Weschnitz ist als sieben-jährliches Hochwasser einzuordnen. Die Wiederkehrzeit des Hochwassers der Gersprenz liegt bei drei Jahren, das der Mümling bei zwei Jahren.

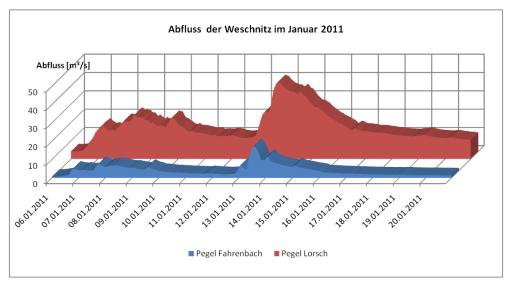


Bild 11: Abflussganglinien ausgewählter Pegel im Odenwald und Hessischen Ried

Bild 12: Hochwasser an der Weschnitz am Pegel Lorsch am 14.1.2011

Bild 13: Hochwasser an der Weschnitz am Pegel Fahrenbach am 14.1.2011

Hochwasser Januar 2011 Meldestufe [cm]			1]		Scheitelv	vert d. 1.	Welle	Scheitelw				
Gewässer	Pegel	I	П	III	HHW	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Weschnitz	Fahrenbach	120	150	190	263	7.1	137	5,54	13.1	206	17,6	k. A.
Weschnitz	Lorsch	300	350	400	389	8.1.	319	24	13.1.	387	41,9	7
Mümling	Hainstadt	250	300	350	409	9.1.	280	30,8	13.1.	286	32,4	2
Gersprenz	Harreshausen	180	220	250	291	8.1.	213	26,5	15.1.	209	25,8	3

^{*} Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Kinziggebiet

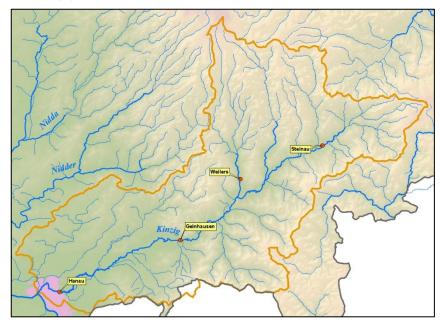


Bild 14: Übersicht Kinziggebiet

Das Hochwasser im Kinziggebiet kann an den meisten Pegeln als ein vier- bis fünfjährliches eingeordnet werden. An den Pegeln Steinau, Gelnhausen und Hanau war der Scheitel der zweiten Welle jeweils höher als der erste Wellenscheitel. An der Kinzigtalsperre wurde der maximale Füllgrad von ca. 67 % am 14.1. verzeichnet.

Am Pegel Steinau im Oberlauf der Kinzig wurde die Hochwassermeldestufe I überschritten, an den Pegeln Gelnhausen und Hanau jeweils die Meldestufe II.

Der höchste Wasserstand am Pegel Hanau wurde am 15.1. mit 410 cm registriert. Dies ist deutlich weniger als bei dem großen Hochwasserereignis 2003, welches mit 464 cm aufgezeichnet wurde. Im Jahr 2003 wurden an Nebengewässern der Kinzig teilweise Abflüsse in der Größenordnung eines HQ 100 registriert.

Die Wasserstände der Bracht, einem Zufluss zur Kinzig, erreichten am Pegel Weilers Werte der Hochwassermeldestufe II. Das Hochwasser wird dort als drei-jährlich eingeordnet.

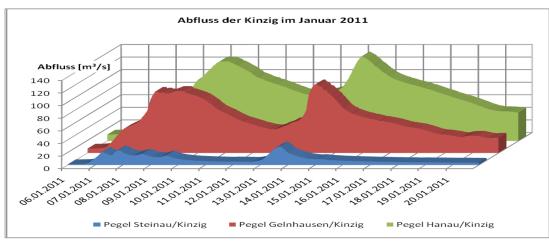


Bild 15: Abflussganglinien ausgewählter Pegel an der Kinzig

Hochwasser Januar 2011 Meldestuf			destufe			Scheitelwert d. 1. Welle			Scheitelv	vert d. 2.	Welle	
Gewässer	Pegel	ı	П	Ш	ннш	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Kinzig	Steinau	160	210	270	285	7.1.	185	23,5	13.1.	204	29,8	1-2
Kinzig	Gelnhausen	300	375	460	486	9.1.	423	99,9	14.1.	431	110	4
Kinzig	Hanau	300	370	440	480	10.1.	408	127	15.1.	410	134	5
Bracht	Weilers	200	240	280	328	7.1.	243	32,5	13.1.	247	35,1	3

^{*} Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Niddagebiet

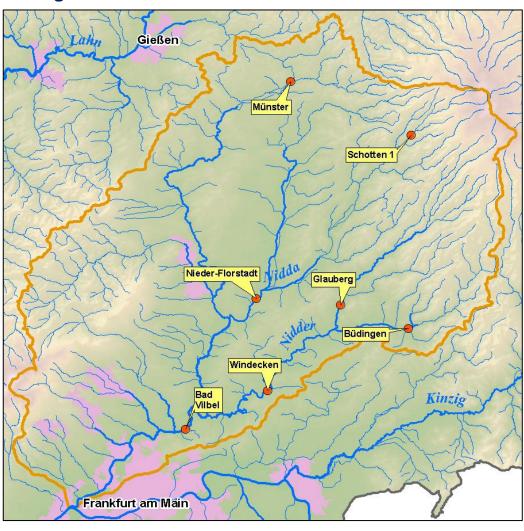


Bild 16: Übersicht Niddagebiet

Im Niddagebiet war das Hochwasser an der Nidder besonders ausgeprägt. Hier wurde am Pegel Glauberg die Hochwassermeldestufe III mit 239 cm überschritten. Im Rückhaltebecken Düdelsheim und in den Retentionsflächen bei Altenstadt wurden große Wassermengen zurückgehalten. Diese flossen langsam ab, sodass am Pegel Windecken über eine Woche die Meldestufe II überschritten blieb. Der Höchststand wurde am 16.1. mit 296 cm erreicht.

Der Pegel Bad Vilbel/Nidda wies über die ganze Hochwasserperiode hohe Abflüsse auf. Auch hier zeigte sich der Einfluss oberliegender Hochwasserrückhaltebecken (Niddatalsperre, HRB Lich usw.), deren Wasserabgaben für einen relativ gleichmäßig hohen Abfluss sorgten, die aber auch

ausgeprägte Hochwasserspitzen verhinderten. Am Pegel Bad Vilbel wurde am 8.1. die Meldestufe I (310 cm) lediglich um einen cm überschritten.

Insgesamt ist das Hochwasserereignis an der Nidda sowie an den Zuflüssen Wetter und Seemenbach als drei- bis fünf-jährliches einzuordnen. Eine Ausnahme bildet die Nidder. Der Hochwasserscheitel am Pegel Glauberg von 22,1 m³/s entsprach ungefähr einem 15-jährlichen Hochwasser.

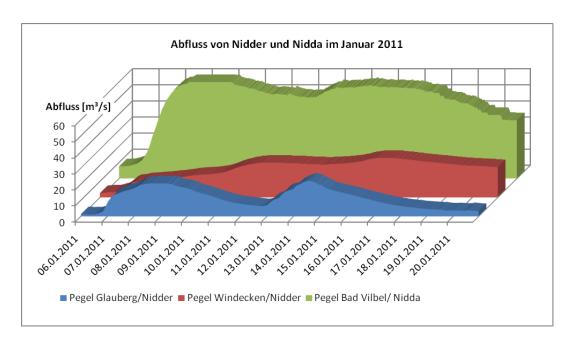


Bild 17: Abflussganglinien ausgewählter Pegel an Nidder und Nidda

Hochwasse	r Januar 2011	Meld	lestufe			Scheitelwert d. 1. Welle			Scheitelw	Scheitelwert d. 2. Welle			
Gewässer	Pegel	I	П	III	HHW	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*	
Wetter	Münster	120	150	170	171	8.1.	146	15,2	13.1.	93	6,33	3	
Nidda	Schotten1	100	125	150	150	8.1.	104	9,81	13.1.	120	13,2	5	
Nidda	Nieder- Florstadt	270	300	330	343	9.1.	286	24,6	15.1.	263	21	4	
Seemenbach	Büdingen	280	310	340	350	7.1.	307	25,5	13.1.	297	23,8	4	
Nidder	Glauberg	210	220	230	251	9.1.	237	21,1	13.1.	239	22,1	15	
Nidder	Windecken	240	280	310	348	12.1.	287	21,6	16.1.	296	24,6	k. A.	
Nidda	Bad Vilbel	310	340	370	380	8.1.	311	61,3	15.1.	291	58,2	3	

^{*} Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Lahngebiet

Breidenbach

Marburg

Dillenburg

Diez

Limburg an

der Lähn

Michelbach

Frankfurt am Main

Bild 18: Übersicht Lahngebiet

In der Lahn wurden an allen Pegeln Hochwassermeldestufen erreicht. An den Pegeln Marburg (504 cm), Gießen (656 cm), Leun (608 cm), und Diez (641 cm) kam es jeweils zur Überschreitung der Meldestufe III. Am Pegel Marburg wurde der Einfluss der Rückhaltebecken Kirchhain, Wohra und Breidenstein deutlich, welche zu einer Verlangsamung des Hochwasserabflusses und Abflachung der Scheitel führten. Das größte Hochwasserereignis im Lahngebiet wurde am Pegel Michelbach/Aar verzeichnet. Der Höchstwasserstand von 227 cm (Meldestufe III) entsprach etwa einem 20-jährlichen Hochwasser. Infolge der Schneeschmelze im Taunus verharrte der Pegel über mehrere Tage in Meldestufe III. Die Pegel an den Lahnzuflüssen Perf, Emsbach, Weil, Ohm und Dill meldeten Hochwassermeldestufe I oder II. Die Hochwasser werden dort als vier- bis sechs-jährliche Ereignisse eingeordnet. Anden Pegeln Ober-Ofleiden/Ohm und Dillenburg/Dill traten lediglich einjährliche Hochwasserereigisse auf.

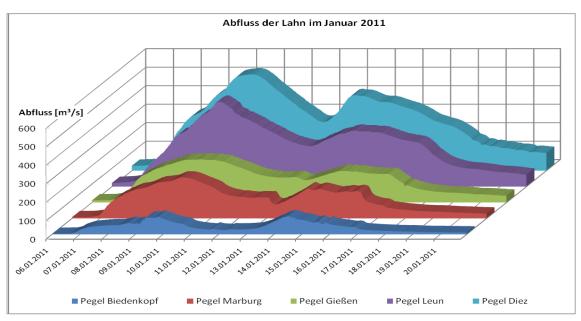


Bild 19:
Abflussganglinien
ausgewählter Pegel
an der
Lahn

Hochwasse	r Januar 2011	Melo	lestufe			Scheitelv	vert d. 1.	Welle	Scheitelw	ert d. 2.	Welle	
Gewässer	Pegel	ı	II	III	HHW	Datum	W[cm	Q[m³/s]	Datum	W[cm	Q[m³/s]	HQ T*
Lahn	Biedenkopf	170	210	270	313	9.1.	216	96,3	14.1.	219	99	4
Lahn	Marburg	400	450	500	533	9.1.	504	201	14.1.	458	151	1
Lahn	Gießen	550	600	650	663	9.1.	656	234	14.1.	617	172	k. A.
Lahn	Leun	500	550	600	647	9.1.	608	459	14.1.	576	303	5
Lahn	Diez	450	550	580	658x	10.1.	641	521	14.1.	566	409	6
Perf	Breidenbach	240	270	310	319x	9.1.	286	31,3	14.1.	263	20,4	5
Aar	Michelbach	135	160	190	250	8.1.	227	24,7	13.1.	193	16	20
Emsbach	Niederbrechen	120	170	220	363x	8.1.	203	31,4	13.1.	116	11,4	6
Weil	Essershausen	170	200	230	293	8.1.	188	30,1	14.1.	144	17,1	5
Ohm	Ober-Ofleiden	250	320	400	440	7.1.	371	96,8	14.1.	252	38,6	1
Dill	Dillenburg	140	180	220	258	9.1.	153	56,3	14.1.	155	57,5	1
Dill	Aßlar	250	300	350	446	9.1.	331	141	14.1.	304	116	4

^{*} Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Edergebiet

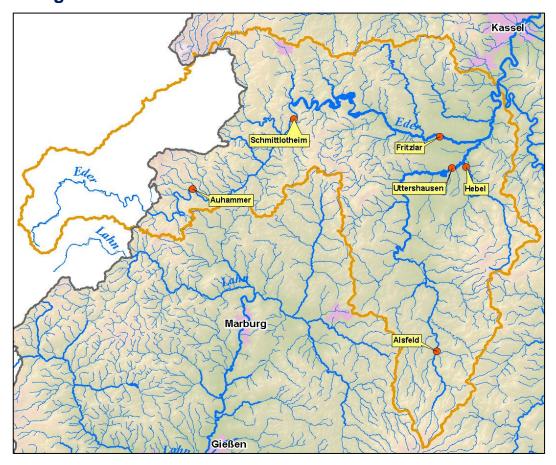


Bild 20: Übersicht Edergebiet

Im Oberlauf der Eder lief das Hochwasser in zwei ausgeprägten Wellen ab. Die Wasserstände der ersten Welle überschritten am Pegel Auhammer mit 272 cm den Wert der Meldestufe I, bei der zweiten Welle lag der Wasserstand mit 303 cm in der Meldestufe II. Das Hochwasser wird als vierjährliches eingestuft.

Am Pegel Fritzlar war der Einfluss der Edertalsperre zu erkennen. Hier wurden infolge der Steuerung der Talsperre über einen längeren Zeitraum relativ gleichmäßige Abflussmengen registriert. Zu Beginn des Hochwasserereignisses war die Talsperre mit ca. 109 Mio. m³ zu 55 % gefüllt. Bis zum 14. 1. stieg das Volumen auf ca. 158 Mio. m³ (79 %) an. Die zweite Welle füllte das Becken dann auf 197 Mio. m³ (99 %).

Am 16.1. beispielsweise betrug der Scheitelwert am Zulaufpegel Schmittlotheim 364 m³/s. Unterhalb der Edertalsperre registrierte der Pegel Fritzlar einen Abfluss von 129 m ³/s. Der Spitzenabflussscheitel konnte somit deutlich reduziert werden. Das Rückhaltevermögen der Edertalsperre wurde dabei optimal zur Reduzierung der Hochwasserspitzen eingesetzt.

An den Ederzuflüssen Schwalm und Efze überschritten die Wasserstände die Werte der Hochwassermeldestufen II. Das Hochwasser an der Schwalm am Pegel Uttershausen ist als zweijährliches, das der Efze am Pegel Hebel als drei-jährliches einzustufen.

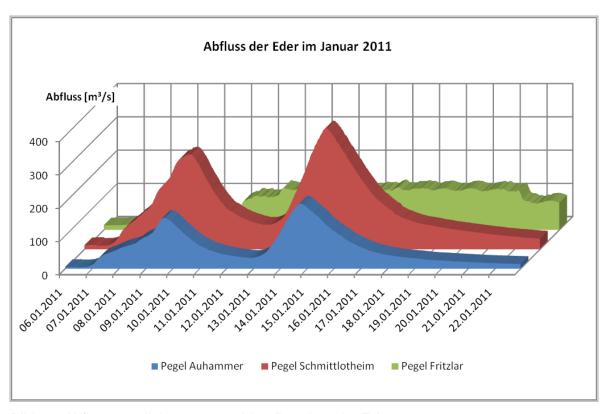


Bild 21: Abflussganglinien ausgewählter Pegel an der Eder

Hochwasse	Hochwasser Januar 2011			e		Scheit	telwert d.	1. Welle	Scheitel			
Gewässer	Pegel	I	Ш	III	HHW	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Eder	Auhammer	220	280	350	331	9.1.	272	155	14.1.	303	197	4
Eder	Schmittlotheim	150	215	350	544	9.1.	286	238	14.1.	364	364	k. A.
Eder	Fritzlar	290	390	470	476	13.1.	294	135	nur	ein Sche	itel	k. A.
Schwalm	Alsfeld	220	kA	kA	292	7.1.	269	41	13.1.	201	13,2	5
Schwalm	Uttershausen	300	330	370	357	9.1.	333	59,5	14.1.	310	49,8	2
Efze	Hebel	150	200	240	266	7.1.	230	37,8	13.1.	202	26,5	3

^{*} Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Fuldagebiet

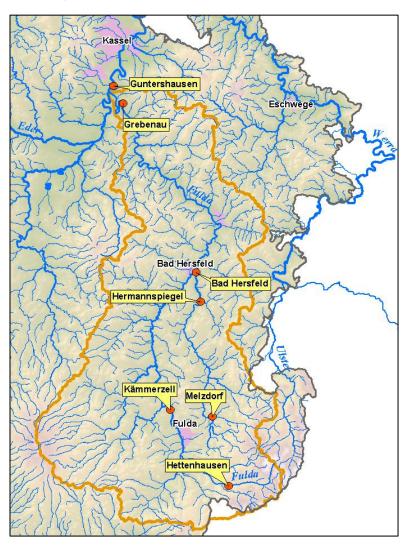


Bild 22: Übersicht Fuldagebiet

Die erste Hochwasserwelle im Mittelund Unterlauf der Fulda war deutlich höher aus als die zweite, beide Male wurden Hochwassermeldestufen überschritten. Während der Hochwasserwelle, die vom 7.1. bis zum 9.1. die Fulda hinab floss, wurde an den Pegeln Kämmerzell und Grebenau die Meldestufe III erreicht. Die übrigen Pegel lagen überwiegend im Bereich der Meldestufe II. Das Hochwasser entspricht ungefähr einem vier- bis fünf-jährlichen Ereignis.

Beim Pegel Guntershausen ist am 13.01 eine kleine Hochwasserspitze erkennbar. Sie wurde verursacht durch die Hochwasserwelle der Schwalm.

In der Haune wurde an den Pegeln Melzdorf und Hermannspiegel die Hochwassermeldestufe III erreicht. Das Hochwasser am Pegel Hermannspiegel ist als 10-jährliches Hochwasser einzuordnen.

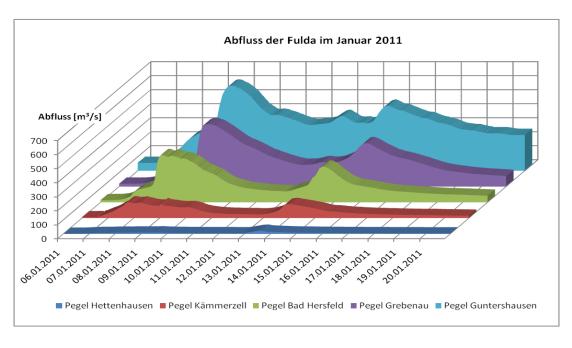


Bild 23: Abflussganglinien ausgewählter Pegel an der Fulda

Hochwasse	r Januar 2011	Meld	estufe			Scheitelw	ert d. 1.	Welle	Scheitelw			
Gewässer	Pegel	Į.	П	III	HHW	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Fulda	Hettenhausen	150	180	210	251	9.1.	179	10,7	13.1.	224	21,6	8
Fulda	Kämmerzell	270	330	400	444	7.1.	400	113	14.1.	392	100	4
Fulda	Bad Hersfeld	430	480	600	668	8.1.	592	338	14.1.	564	256	5
Fulda	Grebenau	250	350	450	523	9.1.	458	449	15.1.	408	311	15
Fulda	Guntershausen	380	410	450	584	9.1.	441	608	15.1.	390	465	10
Haune	Melzdorf	220	250	290	321	7.1.	293	30,3	13.1.	296	31,1	4
Haune	Hermannspiegel	260	310	360	425	7.1.	380	69,7	14.1.	375	65,8	10

Jährlichkeit des höheren Scheitelwerts der beiden Wellen

Werragebiet, obere Weser und Diemelgebiet

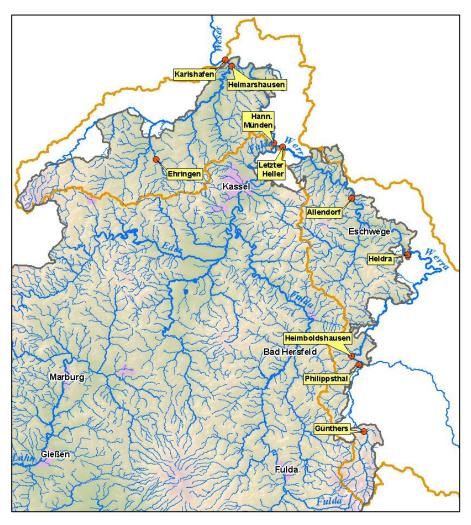


Bild 24: Übersicht Werragebiet, obere Weser, Diemelgebiet

Die erste Hochwasserwelle im hessischen Werraabschnitt wies geringere Wasserstände und Abflussmengen als die zweite auf. Die Scheitelwerte der zweiten Hochwasserwelle überschritten im Zeitraum vom 15. bis zum 17. Januar an allen Pegeln die Meldestufe III. Am Pegel Heldra wurde am 16.1. mit 466 cm der höchste Wasserstand seit Beginn der Messung im Jahr 1951 registriert. Das bisher höchste Hochwasser von 461 cm am 16.4.1994 wurde um 5 cm überschritten und erreichte somit eine Jährlichkeit von 40 Jahren. Auffällig ausgeprägt waren jedoch nicht nur die Scheitelab-

flüsse, sondern auch die Abflussmengen, die aus den über einen langen Zeitraum auf hohem Niveau verharrenden Hochwasserwellen resultierten.

In der Weser machte sich der Einfluss der Fulda bemerkbar. Hier fiel am Pegel Hann. Münden infolge der Zuflüsse aus der Fulda das erste Hochwasser höher aus als das zweite, bei beiden Ereignissen wurde jedoch die Meldestufe III überschritten.

Hohe Wasserstände wurden in der Ulster registriert, sie lagen überwiegend im Bereich der Meldestufe III. Das Hochwasser am Pegel Philippsthal entspricht einem 17-jährlichen Ereignis.

Die Pegel im Diemelgebiet lagen größtenteils im Bereich der Hochwassermeldestufe I, zum Teil auch in der Meldestufe II. Das Hochwasser der Diemel wird als vier-jährliches eingestuft, das des Zuflusses Erpe als zwei-jährliches.

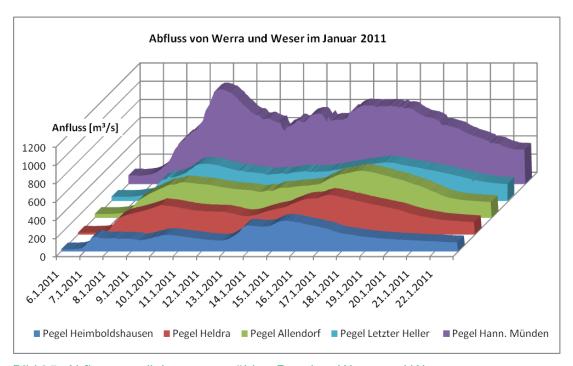


Bild 25: Abflussganglinien ausgewählter Pegel an Werra und Weser

Hochwasse	er Januar 2011	Me	eldestufe	!		Schei	telwert d.	1. Welle	Scheit	elwert d. 2.	Welle	
Gewässer	Pegel	1	Ш	III	HHW	Da- tum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Weser	Hann. Münden	500	570	650	836	10.1.	620	1040	16.1.	575	866	22
Weser	Karlshafen	380	480	500	746	10.1.	606	1010	16.1.	562	862	6
Werra	Heimboldhausen	350	400	450	456	10.1.	402	183	15.1.	453	341	25
Werra	Heldra	380	400	430	461	9.1.	444	327	16.1.	466	438	40
Werra	Allendorf	310	380	420	515	9.1.	420	391	17.1.	447	519	25
Werra	Letzter Heller	350	400	450	548	10.1.	506	409	17.1.	517	425	30
Ulster	Günthers	180	220	280	328	7.1.	232	42,2	13.1.	280	69,5	1
Ulster	Philippsthal	240	300	340	390	7.1.	357	150	13.1.	360	159	17
Erpe	Ehringen	130	200	280	301	9.1.	148	10,5	13.1.	138	9,17	2
Diemel	Helmarshausen	400	500	630	580	10.1.	438	105	14.1.	464	125	4

^{*} Jährlichkeit bezogen auf den höchsten Scheitelwert

Rhein, Main und Neckar

An Rhein und Main verlief der Ablauf der Hochwasserwellen aufgrund der Laufzeiten der Zuflüsse in den Einzugsgebieten anders als in den übrigen hessischen Gewässern.

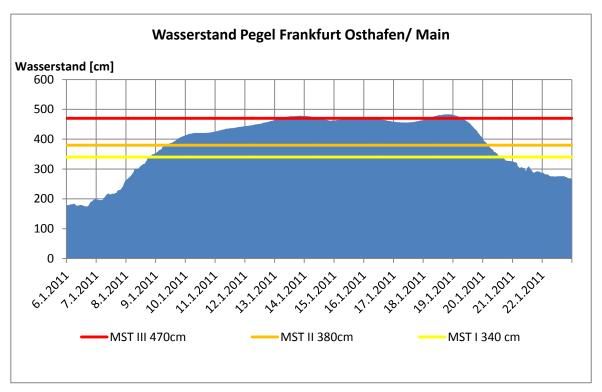


Bild 26: Wasserstandsganglinie am Pegel Frankfurt Osthafen / Main

Im hessischen Mainabschnitt wurde der Scheitel der ersten Hochwasserwelle am 13.1. erreicht. Die Höchstwasserstände betrugen am Pegel Raunheim 491 cm, die Hochwassermeldestufe III wurde erreicht. Am Pegel Frankfurt Osthafen kamen bei einem Scheitelwert von 479 cm (Meldestufe III) 1630 m³/s zum Abfluss. In den folgenden Tagen flossen weiterhin große Wassermassen den Main hinunter, die Wasserstände verharrten dabei auf hohem Niveau.

Bilder 27 und 28: Hochwasser in Frankfurt am Main am 14.1. und 19.1.

Ab dem 17.1.stiegen die Wasserstände am Pegel Frankfurt Osthafen erneut bis auf einen Scheitelwert von 484 cm (Meldestufe III) um 20:00 Uhr an. Das Hochwasser wird als 13-14-jährliches Ereignis eingestuft.

Bilder 29 und 30: Hochwasser in Frankfurt am Main am 14. 1.

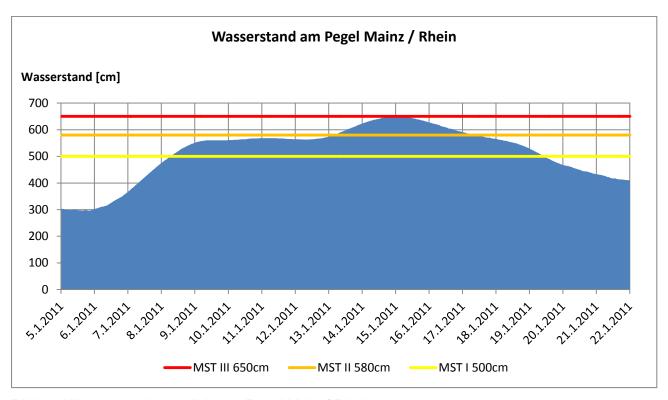


Bild 31: Wasserstandsganglinie am Pegel Mainz/ Rhein

Im Rhein stieg das Wasser am Pegel Mainz ab dem 6.1. bis auf Wasserstände an, die knapp unterhalb der hessischen Meldemarke II lagen. Dort verharrten die Wasserstände mehrere Tage bis zum 13.1. Infolge der Regenfälle am 13. und 14.1. stieg der Rheinwasserstand weiter an. Der Scheitel der Hochwasserwelle wurde am 15.1. mit 649 cm erreicht und lag damit nur einen cm unter der hessischen Meldemarke III von 650 cm. Das Hochwasser am Pegel Mainz wird als sieben-jährliches Ereignis eingeordnet.

Bild 32: Hochwasser an der Einmündung des Mains in den Rhein (Mainspitze) am 18.1.

Bild 33: Hochwasser am Rhein am Weinprobierstand Eltville am 16.1.

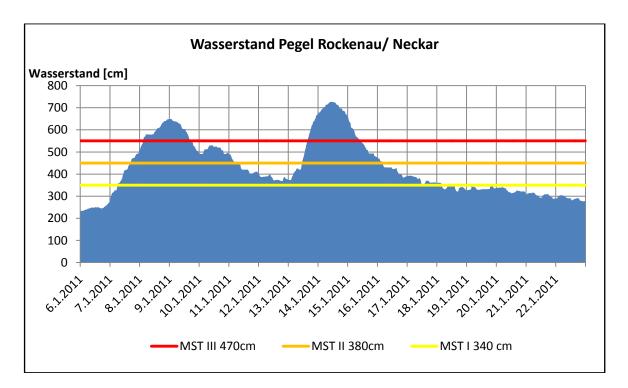


Bild 34: Wasserstandsganglinie am Pegel Rockenau / Neckar

Der Pegel Rockenau am Neckar liegt etwas oberhalb des hessischen Neckarabschnitts. Den Neckar durchliefen zwei Hochwasserwellen. Am Pegel Rockenau wurden hohe Wasserstände von 649 cm am 9.1. und 727 cm am 14.1. registriert. Beide Werte haben die Hochwassermeldestufe III deutlich überschritten. Der Neckarscheitel wurde im weiteren Verlauf maßgebend für den Rheinscheitel bei Mainz.

Hochwasser Januar 2011		Meldestufe				Scheitelwert d. 1. Welle			Scheitelwert d. 2. Welle			
Gewässer	Pegel	1	П	III	HHW	Datum	W[cm]	Q[m³/s]	Datum	W[cm]	Q[m³/s]	HQ T*
Rhein	Mainz	500	580	650	795	15.1.	649	5280	nur 1 Scheitel		7	
Main	Ffm-Osthafen	340	380	470	547	13.1.	479	1630	18.1.	484	1660	13/14
Neckar	Rockenau	350	450	550	994	9.1.	649	k. A.	14.1.	727	k. A.	k. A.

^{*} Jährlichkeit bezogen auf den höchsten Scheitelwert

Einsatz von Talsperren und Hochwasserrückhaltebecken

Während des Hochwasserereignisses im Januar 2011 konnten die bestehenden Talsperren und Hochwasserrückhaltebecken (HRB) durch entsprechenden Einstau zu einem abgemilderten Verlauf der Hochwasserwellen unterhalb der Anlagen beitragen. In der nachfolgenden Tabelle sind die Einstaumengen an ausgewählten Anlagen zusammengestellt:

Maximale Inhalte der Talsperren und HRB

Talsperren/ HRB	max. Stauvolumen	größter Ir	halt	höchste
	[Miom ³]	beim aktu	ıellen Ereignis	prozentuale
		Datum	Inhalt [Miom ³]	Füllung
Marbachtalsperre	3	14.1.	2,44	81,3
Kinzigtalsperre	7,2	14.1.	4,82	66,9
Niddatalsperre	6,74	15.1.	5,04	74,8
HRB Ulfa	0,994	14.1.	0,085	8,6
HRB Lich	3,28	10.1.	1,64	50,0
HRB Düdelsheim	5,02	14.1.	3,38	67,3
Diemeltalsperre	19,93	16./17.1.	18,39	92,3
Edertalsperre	199,3	17.1.	197,7	99,2
HRB Treysa	8,8	15.1.	8	90,9
HRB Heidelbach	5,6	10.01.	4,01	71,6
Antrifttalsperre	3,16	9.01.	2,77	87,7
Twistetalsperre	10	17.1.	5,37	53,7
Haunetalsperre	3,2	8./9.1.	2,41	75,3
HRB Breidenbach	2,56	9.1.	2,32	90,6
HRB Kirchhain	14,9	10.1.	9,7	65,1
HRB Wohra	1,61	10.1.	1,11	68,9
Aartalsperre	3,29	10.1.	2,46	74,8
Ulmbachtalsperre	0,765	14.1.	0,42	54,9

Bild 35: Marbachtalsperre im Odenwald

Vergleich der Hochwasservorhersagen mit der tatsächlichen Hochwasserentwicklung

Hochwasservorhersagen stellen einen elementaren Teil der Hochwasservorsorge dar. Sind die zu erwartenden Wasserstände eines Hochwasserereignisses frühzeitig bekannt, kann der Zeitraum bis zum Erreichen kritischer Wasserstände zur Schadensvorbeugung und Schadensminimierung genutzt werden.

Zur Berechnung von Abfluss- und Wasserstandsvorhersagen kommen dabei zunehmend Wasserhaushaltsmodelle zum Einsatz. Für Hessen wurden drei Wasserhaushaltsmodelle auf Basis des Modells LARSIM (Large Area Runoff Simulation Modell) aufgestellt: Das Lahnmodell, das Modell für Südhessen mit den Zuflüssen zu Rhein und Main und das Modell für den hessischen Wesergebietsanteil. Für die Modellerstellung wurden umfangreiche detaillierte Gebietsdaten (Gewässernetz, Höhenmodell, Landnutzung, Bodenart, usw.) aufbereitet. Die Landesfläche von Hessen (zzgl. der außerhessischen Anteile der Flussgebiete von Lahn, Eder und Diemel) wird in den Modellen durch rund 4500 Teilgebietsflächen abgebildet.

Bild 36: Wasserhaushaltsmodelle (LARSIM) in Hessen

Abflussund Wasserstandsvorhersagen werden in der im Oktober 2010 in Betrieb genommen Hochwasserzentrale des Hessischen Landesamtes für Umwelt und Geologie mindestens einmal täglich berechnet und veröffentlicht. Im Hochwasserfall erfolgt eine Intensivierung der Modellrechnungen mit bis zu stündlicher Aktualisierung. Für rund 40 Pegel werden Abfluss- und Wasserstandsganglinien einer Vorhersagezeit von bis zu 24 Stunden und einem Abschätzungszeitraum von bis zu 7 Tagen dargestellt. Wegen der erhöhten Dynamik der Abflussmengen und Wasserstände werden im Hochwasserfall die Vorhersagezeiten der Pegel individuell auf einen verlässlichen Zeitraum von 3 bis 24 Stunden gekürzt.

Bei Abzeichnen des Witterungswechsels Anfang Januar wurden die Berechnungen der Wasserhaushaltsmodelle von einmal täglich auf einen stündlichen Turnus umgestellt, um den laufenden Veränderungen

der sich anbahnenden Hochwassersituation Rechnung zu tragen. Am Beispiel der Pegel Leun (Lahn) und Harreshausen (Gerprenz) sollen im Folgenden die vorhergesagten mit den gemessenen Wasserständen der ersten Hochwasserwelle verglichen werden.

Der Pegel Leun befindet sich im Mittellauf der Lahn und besitzt somit bereits ein relativ großes Einzugsgebiet von 3571 km². Dadurch lassen sich die Abflussmengen gut quantifizieren und die Vorhersagen mit größerer Sicherheit berechnen. Die verlässliche Vorhersagezeit wurde demnach am Pegel Leun auf einen Zeitraum von 12 Stunden festgelegt. In der Grafik ist der Verlauf der Wasserstände der ersten Hochwasserwelle mit einer Auswahl der stündlichen Vorhersagen dargestellt. Dabei wird jeder Beginn einer Vorhersagelinie mit einem Punkt gekennzeichnet. Dieser Vorhersagezeitpunkt stellt die Grundlage für die jeweilige Vorhersageberechnung dar.

Wie in der Grafik zu sehen, ist die Übereinstimmung zwischen den Messwerten und den jeweils zu den Vorhersagezeitpunkten für die kommenden 8 Stunden prognostizierten Wasserstände gut. Zu Beginn des Ereignisses wurde der Anstieg der Hochwasserwelle in den Vorhersagen zunächst leicht unterschätzt. Als wesentliche Ursache ist eine etwas zu gering berechnete Schneeschmelzgeschwindigkeit anzusehen. Im Verlauf des Ereignisses gleichen sich die Werte der Vorhersagen immer stärker den Messwerten an. Vor allem die Berechnung vom 9.1., 7 Uhr erreicht sowohl vom vorhergesagten Wasserstand wie auch vom zeitlichen Eintreffen sehr gut den tatsächlich gemessenen Scheitelwert.

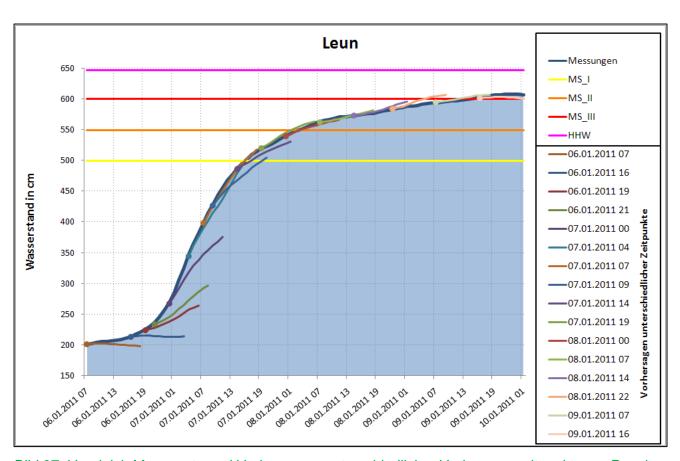


Bild 37: Vergleich Messwerte und Vorhersagen unterschiedlicher Vorhersagezeitpunkte am Pegel Leun (Lahn)

Der Pegel Harreshausen liegt am Unterlauf der Gersprenz, die allerdings ein wesentlich kleineres Gewässer als die Lahn darstellt. Der Pegel hat ein Einzugsgebiet von 463 km², welches überwiegend im südhessischen Odenwald liegt.

Durch das kleinere Einzugsgebiet wurde für diesen Pegel eine kürzere verlässliche Vorhersagezeit von 8 Stunden festgelegt. Die Grafik zeigt im Unterschied zum Pegel Leun eine wesentlich größere Abweichung der einzelnen Vorhersagen, vor allem vom 7. bis 8.1. Hier wird ein sehr viel stärkerer Anstieg der Wasserstände prognostiziert. Diese Diskrepanz ist besonders auf die aus verschiede-

nen Wettermodellen erheblich überschätzte Niederschlagsvorhersage zurückzuführen. Ab dem Vorhersagezeitpunkt 8.1., 7 Uhr, stimmen die Vorhersagen wieder gut mit den Messwerten überein.

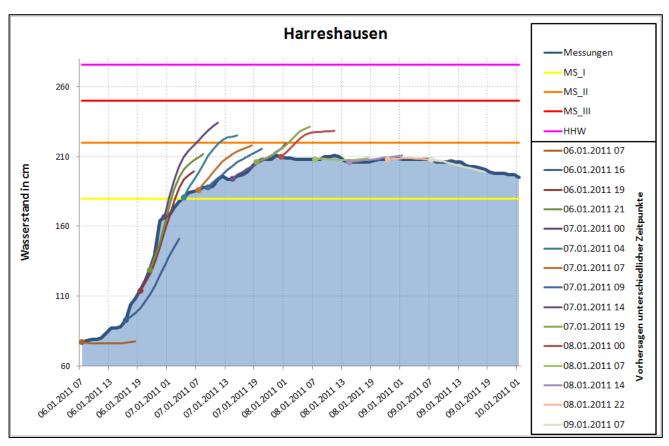


Bild 38: Vergleich Messwerte und Vorhersagen unterschiedlicher Vorhersagezeitpunkte am Pegel Harreshausen (Gerprenz)

Die an den Beispielen der Pegel Leun und Harreshausen dargestellten Schwierigkeiten bei der Vorhersage des Hochwassergeschehens im Januar 2011 lassen sich in unterschiedlichem Ausmaß auf ganz Hessen beziehen. Dabei sind zunächst die Unsicherheiten bei den in die Wasserhaushaltsmodelle eingehenden Niederschlagsprognosen und Temperaturentwicklungen zu nennen.

Eine noch größere Herausforderung stellte aus Sicht der Hochwasservorhersage die Berechnung der in der Schneedecke enthaltenen Wassermenge sowie das Schmelzverhalten dar. Die vor dem Hochwasserereignis besonders ausgedehnte und mächtige Schneedecke, welche sich über einen ungewöhnlich langen Zeitraum von bis zu 6 Wochen aufbaute, besaß ein hohes Potential an Fehleinschätzung.

Trotz dieser außergewöhnlichen Witterungslage zum Jahreswechsel lässt sich eine relativ gute Übereinstimmung zwischen Vorhersagen und Messwerten feststellen. Aufgrund der Schwierigkeiten bei der Schneemodellierung im Winter 2010/2011 wird hier zukünftig auch ein besonderer Akzent bei der Weiterentwicklung der Hochwasservorhersageberechnung in Hessen gelegt.

Zusammenfassung

Nach einem außergewöhnlich schneereichen und kalten Dezember 2010 kam es nach einem Witterungswechsel im Januar 2011 zu einer landesweiten ausgeprägten Hochwassersituation in Hessen. Durch wärmere Temperaturen und Regen schmolz die ganz Hessen bedeckende und bis zu über einem Meter mächtige Schneedecke und führte zu einem raschen Anstieg der Pegelstände. Infolge der unsteten Witterung mit unterschiedlich starken Niederschlägen und z.T. wieder kühleren Temperaturen kam es zu einer langandauernden angespannten Hochwasserlage mit meist mehreren Hochwasserwellen. Dabei wurden an vielen Pegeln über mehr als 10 Tage Meldestufen überschritten, auch wenn die Maximalstände nicht die befürchteten katastrophalen Höhen erreichten.

Somit wurden bei den Jährlichkeiten, die aus den gemessenen Pegelständen abgeleitet werden, i.d.R. auch keine außergewöhnlichen Extremwerte erreicht. Konkret wurde im Lahn- u. Kinziggebiet ein 1-5-jährliches Hochwasser, am Rhein ein 7-jährliches Hochwasser, am Main ein 14-jährliches Hochwasser, im Fuldagebiet ein 5-15-jährliches Hochwasser und im Werragebiet immerhin ein 20-40-jährliches Hochwasser verzeichnet. Insgesamt kann das Winterhochwasser 2010/2011 als ein weniger starkes aber zeitlich und räumlich sehr ausgedehntes Hochwasserereignis eingestuft werden. Während des Hochwasserereignisses kam der überwiegende Teil der vielen Talsperren und Hochwasserrückhaltbecken in Hessen zum Einsatz und konnte durch entsprechenden Rückhalt zur Abminderung der Hochwasserspitzen beitragen.

Die drei für die hessische Landesfläche etablierten Wasserhaushaltsmodelle (Wesergebiet, Lahngebiet und Südhessen) auf Basis des Modells LARSIM (Large Area Runoff Simulation Modell), dienen seit Ende Oktober 2010 vor allem der Hochwasservorhersage. Dabei wurden die Berechnungsmodelle im Winter 2010/2011 aufgrund der außergewöhnlichen Schneesituation vor besondere Herausforderungen gestellt. Trotz dieser Schwierigkeiten wird insgesamt ein positives Resümee für den Bereich der Hochwasservorhersage gezogen.

